76 research outputs found

    Deep Sequencing of Distinct Preparations of the Live Attenuated Varicella-Zoster Virus Vaccine Reveals a Conserved Core of Attenuating Single-Nucleotide Polymorphisms

    Get PDF
    The continued success of the live attenuated varicella-zoster virus vaccine in preventing varicella-zoster and herpes zoster is well documented, as are many of the mutations that contribute to the attenuation of the vOka virus for replication in skin. At least three different preparations of vOka are marketed. Here, we show using deep sequencing of seven batches of vOka vaccine (including ZostaVax, VariVax, VarilRix, and the Oka/Biken working seed) from three different manufacturers (VariVax, GSK, and Biken) that 137 single-nucleotide polymorphism (SNP) mutations are present in all vaccine batches. This includes six sites at which the vaccine allele is fixed or near fixation, which we speculate are likely to be important for attenuation. We also show that despite differences in the vaccine populations between preparations, batch-to-batch variation is minimal, as is the number and frequency of mutations unique to individual batches. This suggests that the vaccine manufacturing processes are not introducing new mutations and that, notwithstanding the mixture of variants present, VZV live vaccines are extremely stable

    Viral genome sequencing proves nosocomial transmission of fatal varicella.

    Get PDF
    We report the first use of whole viral genome sequencing to identify nosocomial transmission of varicella zoster virus with fatal outcome. The index case, nursed in source isolation, developed disseminated zoster with rash being present for one day prior to being transferred to the Intensive Care Unit. Two patients who had received renal transplants while inpatients in an adjacent ward, developed chickenpox and one died. In neither case was there direct contact with the index patient

    Genetic and phenotypic intrastrain variation in herpes simplex virus type 1 Glasgow strain 17 syn+-derived viruses

    Get PDF
    The Glasgow s17 syn+ strain of herpes simplex virus 1 (HSV1) is arguably the best characterized strain and has provided the reference sequence for HSV1 genetic studies. Here we show that our original s17 syn+ stock was a mixed population from which we have isolated a minor variant that, unlike other strains in the laboratory, fails to be efficiently released from infected cells and spreads predominantly by direct cell-to-cell transmission. Analysis of other s17-derived viruses that had been isolated elsewhere revealed a number with the same release phenotype. Second-generation sequencing of 8 plaque-purified s17-derived viruses revealed sequences that vary by 50 single-nucleotide polymorphisms (SNPs), including approximately 10 coding SNPs. This compared to interstrain variations of around 800 SNPs in strain Sc16, of which a quarter were coding changes. Amongst the variations found within s17, we identified 13 variants of glycoprotein C within the original stock of virus that were predominantly a consequence of altered homopolymeric runs of C residues. Characterization of seven isolates coding for different forms of gC indicated that all were expressed, despite six of them lacking a transmembrane domain. While the release phenotype did not correlate directly with any of these identified gC variations, further demonstration that nine clinical isolates of HSV1 also fail to spread through extracellular release raises the possibility that propagation in tissue culture had altered the HSV1 s17 transmission phenotype. Hence, the s17 intrastrain variation identified here offers an excellent model for understanding both HSV1 transmission and tissue culture adaptation

    Evasion of a human cytomegalovirus entry inhibitor with potent cysteine reactivity is concomitant with the utilisation of a heparan sulfate proteoglycan independent route of entry

    Get PDF
    The dependence of viruses on the host cell to complete their replicative cycle renders cellular functions potential targets for novel anti-virals. We screened a panel of broad acting cellular ion channel inhibitors for activity against human cytomegalovirus (HCMV) and identified the voltage-gated chloride ion channel inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) as a potent inhibitor of HCMV replication. Time of addition studies demonstrated that DIDS inhibited entry via a direct interaction with the virion that impeded binding to the plasma membrane. Synthesis and analysis of pharmacological variants of DIDS suggested that intrinsic cysteine, and not lysine, reactivity was important for activity against HCMV.Although sequencing of a DIDS-resistant HCMV revealed enrichment of a mutation within UL100 (encoding for glycoprotein M) and a specific truncation of glycoprotein RL13, these did not explain the DIDS resistance phenotype. Specifically, only the introduction of the RL13 mutant partially pheno-copied the DIDS resistance phenotype. Serendipitously, the entry of DIDS-resistant HCMV also became independent of heparan sulfate proteoglycans (HSPGs) suggesting that evasion of DIDS lowered dependence on an initial interaction with HSPGs. Intriguingly, the DIDS-resistant virus demonstrated increased sensitivity to antibody neutralisation, which mapped, in part, to the presence of the gM mutation.Taken together the data characterise the anti-viral activity of a novel HCMV inhibitor that drives HCMV infection to occur independent of HSPGs and the generation of increased sensitivity to humoral immunity. The data also demonstrate that compounds with cysteine reactivity have the potential to act as anti-viral compounds against HCMV via direct engagement of virions.IMPORTANCE Human cytomegalovirus (HCMV) is major pathogen of non-immunocompetent individuals which remains in need of new therapeutic options. Here we have identified a potent antiviral compound (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, DIDS), its mechanism of action and the chemical properties required for its activity. In doing so, the data argue that cysteine-reactive compounds could have the capacity to be developed for anti-HCMV activity. Importantly, the data show that entry of DIDS resistant virus became independent of heparan sulfate proteoglycans (HSPGs) but, concomitantly, became more sensitive to neutralising antibody responses. This serendipitous observation suggests that retention of an interaction with HSPGs during the entry process in vivo may be evolutionarily advantageous through better evasion of humoral responses directed against HCMV virions

    Leishmania-specific surface antigens show sub-genus sequence variation and immune recognition.

    Get PDF
    A family of hydrophilic acylated surface (HASP) proteins, containing extensive and variant amino acid repeats, is expressed at the plasma membrane in infective extracellular (metacyclic) and intracellular (amastigote) stages of Old World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that parasites of the sub-genus Leishmania (Viannia) have lost HASP genes from their genomes

    Co-evolution of sites under immune selection shapes Epstein-Barr Virus population structure

    Get PDF
    Epstein-Barr virus (EBV) is one of the most common viral infections in humans and persists within its host for life. EBV therefore represents an extremely successful virus that has evolved complex strategies to evade the host's innate and adaptive immune response during both initial and persistent stages of infection. Here, we conducted a comparative genomics analysis on 223 whole genome sequences of world-wide EBV strains. We recover extensive genome-wide linkage disequilibrium (LD) despite pervasive genetic recombination. This pattern is explained by the global EBV population being subdivided into three main sub-populations, one primarily found in East Asia, one in Southeast Asia and Oceania, and the third including most of the other globally distributed genomes we analyzed. Additionally, sites in LD were overrepresented in immunogenic genes. Taken together, our results suggest that host immune selection and local adaptation to different human host populations has shaped the genome-wide patterns of genetic diversity in EBV

    Recurrent herpes zoster in the Shingles Prevention Study: Are second episodes caused by the same varicella-zoster virus strain?

    Get PDF
    Herpes zoster (HZ) is caused by reactivation of varicella zoster virus (VZV) that established latency in sensory and autonomic neurons during primary infection. In the Shingles Prevention Study (SPS), a large efficacy trial of live attenuated Oka/Merck zoster vaccine (ZVL), PCR-confirmed second episodes of HZ occurred in two of 660 placebo and one of 321 ZVL recipients with documented HZ during a mean follow-up of 3.13 years. An additional two ZVL recipients experienced a second episode of HZ in the Long-Term Persistence Substudy. All episodes of HZ were caused by wild-type VZV. The first and second episodes of HZ occurred in different dermatomes in each of these five participants, with contralateral recurrences in two. Time between first and second episodes ranged from 12 to 28 months. One of the five participants, who was immunocompetent on study enrollment, was immunocompromised at the onset of his first and second episodes of HZ. VZV DNA isolated from rash lesions from the first and second episodes of HZ was used to sequence the full-length VZV genomes. For the unique-sequence regions of the VZV genome, we employed target enrichment of VZV DNA, followed by deep sequencing. For the reiteration regions, we used PCR amplification and Sanger sequencing. Our analysis and comparison of the VZV genomes from the first and second episodes of HZ in each of the five participants indicate that both episodes were caused by the same VZV strain. This is consistent with the extraordinary stability of VZV during the replication phase of varicella and the subsequent establishment of latency in sensory ganglia throughout the body. Our observations also indicate that VZV is stable during the persistence of latency and the subsequent reactivation and replication that results in HZ

    RepSeq-A database of amino acid repeats present in lower eukaryotic pathogens

    Get PDF
    BACKGROUND Amino acid repeat-containing proteins have a broad range of functions and their identification is of relevance to many experimental biologists. In human-infective protozoan parasites (such as the Kinetoplastid and Plasmodium species), they are implicated in immune evasion and have been shown to influence virulence and pathogenicity. RepSeq http://repseq.gugbe.com is a new database of amino acid repeat-containing proteins found in lower eukaryotic pathogens. The RepSeq database is accessed via a web-based application which also provides links to related online tools and databases for further analyses. RESULTS The RepSeq algorithm typically identifies more than 98% of repeat-containing proteins and is capable of identifying both perfect and mismatch repeats. The proportion of proteins that contain repeat elements varies greatly between different families and even species (3 - 35% of the total protein content). The most common motif type is the Sequence Repeat Region (SRR) - a repeated motif containing multiple different amino acid types. Proteins containing Single Amino Acid Repeats (SAARs) and Di-Peptide Repeats (DPRs) typically account for 0.5 - 1.0% of the total protein number. Notable exceptions are P. falciparum and D. discoideum, in which 33.67% and 34.28% respectively of the predicted proteomes consist of repeat-containing proteins. These numbers are due to large insertions of low complexity single and multi-codon repeat regions. CONCLUSION The RepSeq database provides a repository for repeat-containing proteins found in parasitic protozoa. The database allows for both individual and cross-species proteome analyses and also allows users to upload sequences of interest for analysis by the RepSeq algorithm. Identification of repeat-containing proteins provides researchers with a defined subset of proteins which can be analysed by expression profiling and functional characterisation, thereby facilitating study of pathogenicity and virulence factors in the parasitic protozoa. While primarily designed for kinetoplastid work, the RepSeq algorithm and database retain full functionality when used to analyse other species

    In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency

    Get PDF
    Varicella-zoster virus (VZV) establishes latency in human sensory and cranial nerve ganglia during primary infection (varicella), and the virus can reactivate and cause zoster after primary infection. The mechanism of how the virus establishes and maintains latency and how it reactivates is poorly understood, largely due to the lack of robust models. We found that axonal infection of neurons derived from hESCs in a microfluidic device with cell-free parental Oka (POka) VZV resulted in latent infection with inability to detect several viral mRNAs by reverse transcriptase-quantitative PCR, no production of infectious virus, and maintenance of the viral DNA genome in endless configuration, consistent with an episome configuration. With deep sequencing, however, multiple viral mRNAs were detected. Treatment of the latently infected neurons with Ab to NGF resulted in production of infectious virus in about 25% of the latently infected cultures. Axonal infection of neurons with vaccine Oka (VOka) VZV resulted in a latent infection similar to infection with POka; however, in contrast to POka, VOka-infected neurons were markedly impaired for reactivation after treatment with Ab to NGF. In addition, viral transcription was markedly reduced in neurons latently infected with VOka compared with POka. Our in vitro system recapitulates both VZV latency and reactivation in vivo and may be used to study viral vaccines for their ability to establish latency and reactivate

    High Viral Diversity and Mixed Infections in Cerebral Spinal Fluid From Cases of Varicella Zoster Virus Encephalitis.

    Get PDF
    Background Varicella zoster virus (VZV) may cause encephalitis, both with and without rash. Here we investigate whether viruses recovered from the central nervous system (CNS; encephalitis or meningitis) differ genetically from those recovered from non-CNS samples. Methods Enrichment-based deep sequencing of 45 VZV genomes from cerebral spinal fluid (CSF), plasma, bronchoalveolar lavage (BAL), and vesicles was carried out with samples collected from 34 patients with and without VZV infection of the CNS. Results Viral sequences from multiple sites in the same patient were identical at the consensus level. Virus from vesicle fluid and CSF in cases of meningitis showed low-level diversity. By contrast, plasma, BAL, and encephalitis had higher numbers of variant alleles. Two CSF-encephalitis samples had high genetic diversity, with variant frequency patterns typical of mixed infections with different clades. Conclusions Low viral genetic diversity in vesicle fluid is compatible with previous observations that VZV skin lesions arise from single or low numbers of virions. A similar result was observed in VZV from cases of VZV meningitis, a generally self-limiting infection. CSF from cases of encephalitis had higher diversity with evidence for mixed clade infections in 2 cases. We hypothesize that reactivation from multiple neurons may contribute to the pathogenesis of VZV encephalitis
    • …
    corecore