192 research outputs found

    On the hopping pattern design for D2D Discovery

    Full text link
    The hopping pattern for D2D Discovery are investi- gated. We propose three metrics for hopping pattern performance evaluation: column period, maximal collision ratio, maximal con- tinual collision number. A class of hopping patterns is constructed based on the metrics, and through simulation the patterns show better discovery performance

    Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu-7Cr-0.1Ag in situ composites

    Get PDF
    The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu-7Cr-0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu-7Cr-0.1Ag alloys with different growth rates. At a growth rate of 200 μm s-1, the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu-7Cr-0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu-7Cr-0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s-1 and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS

    Symmetry guaranteed Dirac-line semimetals in two-dimensions against strong spin-orbit coupling

    Full text link
    Several intriguing electronic phenomena and electric properties were discovered in three-dimensional Dirac nodal line semimetals (3D-DNLSM), which are, however, easy to be perturbed under strong spin-orbit coupling (SOC). While two-dimensional (2D) layers are an emerging material category with many advantages, 2D-DNLSM against SOC is yet to be uncovered. Here, we report a 2D-DNLSM in odd-atomic-layer Bi (the brick phase, another Bi allotrope), whose robustness against SOC is protected by the little co-group C_2v \times Z^T_2, the unique protecting symmetry we found in 2D.Specially, (4n+2) valence electrons fill the electronic bands in the brick phase, so that the Dirac nodal line with fourfold degeneracy locates across the Fermi level. There are almost no other low energy states close to the Fermi level; this allows to feasibly observe the neat DNLSM-induced phenomena in transport measurements without being affected by other bands. In contrast, Other VA-group elements also form the brick phases, but their DNL states are mixed with the extra states around the Fermi level. This unprecedented category of layered materials allows for exploring nearly isolated 2DDNL states in 2D.Comment: Totally 25 pages including main text, methods and supporting information, 4 figures, 8 SI figure

    Influence of Ag micro-alloying on the thermal stability and ageing characteristics of a Cu–14Fe in-situ composite

    Get PDF
    This paper studied the influence of Ag micro-alloying on the thermal stability and ageing characteristics of a deformation-processed Cu–14Fe in-situ composite prepared by thermo-mechanical processing. Heat treatment caused (i) edge recession, longitudinal splitting, cylinderization, break-up and spheroidisation of the Fe fibres in the Ag micro-alloyed Cu–14Fe in-situ composite, and (ii) recovery, recrystallisation and precipitation in the Cu matrix. Ag micro-alloying caused these processes to occur at lower temperatures. The index Z (a combination figure of merit that assesses the service performance) reached the peak value of 3.3×10 MPa·% IACS after isothermal heat treatment at 500 °C for 1 h, where IACS is the International Annealed Copper Standard, a measure of conductivity. The optimum combinations of tensile strength and conductivity were 1033 MPa and 56.6% IACS; 931 MPa and 58.9% IACS; or 851 MPa and 60.6% IACS. The tensile strength and conductivity of Ag micro-alloyed Cu–14Fe in-situ composite at η=7.8 after isochronal heat treatments were higher than those of the Cu–14Fe in-situ composite at each temperature

    Photocatalytic and Magnetic Behaviors Observed in BiFeO 3

    Get PDF
    Perovskite-type BiFeO3 nanofibers with wave nodes-like morphology were prepared by electrospinning. The nanofibers show a highly enhanced visible-light-active photocatalytic property. The results also showed that the diameter could affect the band gap and photocatalytic performances of nanofibers. Additionally, weak ferromagnetic behaviors can be observed at room temperature, which should be correlated to the size-confinement effect on the magnetic ordering of BiFeO3 structure

    Identification of novel driver mutations of the discoidin domain receptor 2 (DDR2) gene in squamous cell lung cancer of Chinese patients

    Get PDF
    BACKGROUND: Although many of the recently approved genomically targeted therapies have improved outcomes for patients in non–small-cell lung cancer (NSCLC) with lung adenocarcinoma, little is known about the genomic alterations that drive lung squamous cell cancer (SCC) and development of effective targeted therapies in lung SCC is a promising area to be further investigated. Discoidin domain receptor 2 (DDR2), is a novel receptor tyrosine kinases that respond to several collagens and involved in tissue repair, primary and metastatic cancer progression. METHODS: Expression of DDR2 mRNA was analyzed in 54 lung SCC tissues by qRT-PCR. Over-expression approaches were used to investigate the biological functions of DDR2 and its’ mutations in lung SCC cells. Conventional Sanger sequencing was used to investigate the mutations of DDR2 gene in 86 samples. The effect of DDR2 and its’ mutations on proliferation was evaluated by MTT and colony formation assays; cell migration and invasion was evaluated by trasnwell assays. Lung SCC cells stably transfected with pEGFP-DDR2 WT, pEGFP-DDR2-S131C or empty vector were injection into nude mice to study the effect of DDR2 and its’ mutation on tumorigenesis in vivo. Protein and mRNA expression levels of E-cadherin and MMP2 were determined by qRT-PCR and western blot analysis. Differences between groups were tested for significance using Student’s t-test (two-tailed). RESULTS: In this study, we found that DDR2 mRNA levels were significantly decreased in 54 lung SCC tissues compared with normal lung tissues. Moreover, there were 3 novel DDR2 mutations (G531V, S131C, T681I) in 4 patients and provide the mutation rate of 4.6% in the 86 patients with lung SCC. The mutation of S131C in DDR2 could promote lung SCC cells proliferation, migration and invasion via inducing MMP-2, but reducing E-cadherin expression. CONCLUSIONS: These data indicated that the novel DDR2 mutation may contribute to the development and progression of lung SCC and this effect may be associated with increased proliferation and invasiveness, at least in part, via regulating E-cadherin expression

    Microstructure and properties of a deformation-processed Cu-Cr-Ag in situ composite by directional solidification

    Get PDF
    Cu-7Cr-0.07Ag alloys were prepared by casting and directional solidification, from which deformation-processed in situ composites were prepared by thermo-mechanical processing. The microstructure, mechanical properties, and electrical properties were investigated using optical microscopy, scanning electronic microscopy, tensile testing, and a micro-ohmmeter. The second-phase Cr grains of the directional solidification Cu-7Cr-0.07Ag in situ composite were parallel to the drawing direction and were finer, which led to a higher tensile strength and a better combination of properties

    Enzyme-Catalytic Self-Triggered Release of Drugs from a Nanosystem for Efficient Delivery to Nuclei of Tumor Cells.

    Get PDF
    Stimulus-responsive drug delivery nanosystems (DDSs) are of great significance in improving cancer therapy for intelligent control over drug release. However, among them, many DDSs are unable to realize rapid and sufficient drug release because most internal stimulants might be consumed during the release process. To address the plight, an abundant supply of stimulants is highly desirable. Herein, a core crosslinked pullulan-di-(4,1-hydroxybenzylene)diselenide nanosystem, which could generate abundant exogenous-stimulant reactive oxygen species (ROS) via tumor-specific NAD(P)H:quinone oxidoreductase-1 (NQO1) catalysis, was constructed by the encapsulation of β-lapachone. The enzyme-catalytic-generated ROS induced self-triggered cascade amplification release of loaded doxorubicin (DOX) in the tumor cells, thus achieving efficient delivery of DOX to the nuclei of tumor cells by breaking the diselenide bond of the nanosystem. As a result, the antitumor effect of this nanosystem was significantly improved in the HepG2 xenograft model. In general, this study offers a new paradigm for utilizing the interaction between the loaded agent and carrier in the tumor cells to obtain self-triggered drug release in the design of DDSs for enhanced cancer therapy
    • …
    corecore