138 research outputs found

    swTVM: Exploring the Automated Compilation for Deep Learning on Sunway Architecture

    Full text link
    The flourish of deep learning frameworks and hardware platforms has been demanding an efficient compiler that can shield the diversity in both software and hardware in order to provide application portability. Among the exiting deep learning compilers, TVM is well known for its efficiency in code generation and optimization across diverse hardware devices. In the meanwhile, the Sunway many-core processor renders itself as a competitive candidate for its attractive computational power in both scientific and deep learning applications. This paper combines the trends in these two directions. Specifically, we propose swTVM that extends the original TVM to support ahead-of-time compilation for architecture requiring cross-compilation such as Sunway. In addition, we leverage the architecture features during the compilation such as core group for massive parallelism, DMA for high bandwidth memory transfer and local device memory for data locality, in order to generate efficient code for deep learning application on Sunway. The experimental results show the ability of swTVM to automatically generate code for various deep neural network models on Sunway. The performance of automatically generated code for AlexNet and VGG-19 by swTVM achieves 6.71x and 2.45x speedup on average than hand-optimized OpenACC implementations on convolution and fully connected layers respectively. This work is the first attempt from the compiler perspective to bridge the gap of deep learning and high performance architecture particularly with productivity and efficiency in mind. We would like to open source the implementation so that more people can embrace the power of deep learning compiler and Sunway many-core processor

    Intelligent-Unrolling: Exploiting Regular Patterns in Irregular Applications

    Full text link
    Modern optimizing compilers are able to exploit memory access or computation patterns to generate vectorization codes. However, such patterns in irregular applications are unknown until runtime due to the input dependence. Thus, either compiler's static optimization or profile-guided optimization based on specific inputs cannot predict the patterns for any common input, which leads to suboptimal code generation. To address this challenge, we develop Intelligent-Unroll, a framework to automatically optimize irregular applications with vectorization. Intelligent-Unroll allows the users to depict the computation task using \textit{code seed} with the memory access and computation patterns represented in \textit{feature table} and \textit{information-code tree}, and generates highly efficient codes. Furthermore, Intelligent-Unroll employs several novel optimization techniques to optimize reduction operations and gather/scatter instructions. We evaluate Intelligent-Unroll with sparse matrix-vector multiplication (SpMV) and graph applications. Experimental results show that Intelligent-Unroll is able to generate more efficient vectorization codes compared to the state-of-the-art implementations

    Visualizing the proteome of Escherichia coli: an efficient and versatile method for labeling chromosomal coding DNA sequences (CDSs) with fluorescent protein genes

    Get PDF
    To investigate the feasibility of conducting a genomic-scale protein labeling and localization study in Escherichia coli, a representative subset of 23 coding DNA sequences (CDSs) was selected for chromosomal tagging with one or more fluorescent protein genes (EGFP, EYFP, mRFP1, DsRed2). We used Ī»-Red recombination to precisely and efficiently position PCR-generated DNA targeting cassettes containing a fluorescent protein gene and an antibiotic resistance marker, at the C-termini of the CDSs of interest, creating in-frame fusions under the control of their native promoters. We incorporated cre/loxP and flpe/frt technology to enable multiple rounds of chromosomal tagging events to be performed sequentially with minimal disruption to the target locus, thus allowing sets of proteins to be co-localized within the cell. The visualization of labeled proteins in live E. coli cells using fluorescence microscopy revealed a striking variety of distributions including: membrane and nucleoid association, polar foci and diffuse cytoplasmic localization. Fifty of the fifty-two independent targeting experiments performed were successful, and 21 of the 23 selected CDSs could be fluorescently visualized. Our results show that E. coli has an organized and dynamic proteome, and demonstrate that this approach is applicable for tagging and (co-) localizing CDSs on a genome-wide scale

    Visual characterization of associative quasitrivial nondecreasing operations on finite chains

    Full text link
    In this paper we provide visual characterization of associative quasitrivial nondecreasing operations on finite chains. We also provide a characterization of bisymmetric quasitrivial nondecreasing binary operations on finite chains. Finally, we estimate the number of functions belonging to the previous classes.Comment: 25 pages, 18 Figure

    Prognostic value of the FUT family in acute myeloid leukemia

    Get PDF
    Genetic abnormalities are more frequently viewed as prognostic markers in acute myeloid leukemia (AML) in recent years. Fucosylation, catalyzed by fucosyltransferases (FUTs), is a post-translational modification that widely exists in cancer cells. However, the expression and clinical implication of the FUT family (FUT1-11) in AML has not been investigated. From the Cancer Genome Atlas database, a total of 155 AML patients with complete clinical characteristics and FUT1-11 expression data were included in our study. In patients who received chemotherapy alone showed that high expression levels of FUT3, FUT6, and FUT7 had adverse effects on event-free survival (EFS) and overall survival (OS) (all P <0.05), whereas high FUT4 expression had favorable effects on EFS and OS (all P <0.01). However, in the allogeneic hematopoietic stem cell transplantation (allo-HSCT) group, we only found a significant difference in EFS between the high and low FUT3 expression subgroups (P = 0.047), while other FUT members had no effect on survival. Multivariate analysis confirmed that high FUT4 expression was an independent favorable prognostic factor for both EFS (HR = 0.423, P = 0.001) and OS (HR = 0.398, P <0.001), whereas high FUT6 expression was an independent risk factor for both EFS (HR = 1.871, P = 0.017) and OS (HR = 1.729, P = 0.028) in patients who received chemotherapy alone. Moreover, we found that patients with low FUT4 and high FUT6 expressions had the shortest EFS and OS (P <0.05). Our study suggests that high expressions of FUT3/6/7 predict poor prognosis, high FUT4 expression indicates good prognosis in AML; FUT6 and FUT4 have the best prognosticating profile among them, but their effects could be neutralized by allo-HSCT

    Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals RNA N6-methyladenosine modification associated with prognosis and drug resistance in acute myeloid leukemia

    Get PDF
    IntroductionAcute myeloid leukemia (AML) is a type of blood cancer that is identified by the unrestricted growth of immature myeloid cells within the bone marrow. Despite therapeutic advances, AML prognosis remains highly variable, and there is a lack of biomarkers for customizing treatment. RNA N6-methyladenosine (m6A) modification is a reversible and dynamic process that plays a critical role in cancer progression and drug resistance.MethodsTo investigate the m6A modification patterns in AML and their potential clinical significance, we used the AUCell method to describe the m6A modification activity of cells in AML patients based on 23 m6A modification enzymes and further integrated with bulk RNA-seq data.ResultsWe found that m6A modification was more effective in leukemic cells than in immune cells and induced significant changes in gene expression in leukemic cells rather than immune cells. Furthermore, network analysis revealed a correlation between transcription factor activation and the m6A modification status in leukemia cells, while active m6A-modified immune cells exhibited a higher interaction density in their gene regulatory networks. Hierarchical clustering based on m6A-related genes identified three distinct AML subtypes. The immune dysregulation subtype, characterized by RUNX1 mutation and KMT2A copy number variation, was associated with a worse prognosis and exhibited a specific gene expression pattern with high expression level of IGF2BP3 and FMR1, and low expression level of ELAVL1 and YTHDF2. Notably, patients with the immune dysregulation subtype were sensitive to immunotherapy and chemotherapy.DiscussionCollectively, our findings suggest that m6A modification could be a potential therapeutic target for AML, and the identified subtypes could guide personalized therapy
    • ā€¦
    corecore