20 research outputs found

    Returning home: heritage work among the Stl'atl'imx of the Lower Lillooet River Valley

    Get PDF
    This article focusses on heritage practices in the tensioned landscape of the Stl’atl’imx (pronounced Stat-lee-um) people of the Lower Lillooet River Valley, British Columbia, Canada. Displaced from their traditional territories and cultural traditions through the colonial encounter, they are enacting, challenging and remaking their heritage as part of their long term goal to reclaim their land and return ‘home’. I draw on three examples of their heritage work: graveyard cleaning, the shifting ‘official’/‘unofficial’ heritage of a wagon road, and marshalling of the mountain named Nsvq’ts (pronounced In-SHUCK-ch) in order to illustrate how the past is strategically mobilised in order to substantiate positions in the present. While this paper focusses on heritage in an Indigenous and postcolonial context, I contend that the dynamics of heritage practices outlined here are applicable to all heritage practices

    Physicochemical and mineralogical characterization of earth for building in North West Italy

    No full text
    A mineralogical and morphological investigation was conducted on unstabilised sun-dried adobes (UBs) taken from rural constructions in Asti (North West Italy) that date the nineteenth century. Since not all soils can be used for housing material, an evaluation and a characterization of their constituents play important roles in developing efficient and durable adobe building materials. A particle size distribution, XRD, TG-DTA, SEM-EDAX analysis and porosimetry were carried out to characterize the constituent materials of UBs and to compare them with several other soils collected in the Asti and Alba areas. More than fifty different soils have been sampled from neighbouring outcrops and quarries around the rural constructions. The most significant samples, with a granularity close to the UBs grain size distribution, were selected and their mineralogical composition compared with the adobe composition. The comparison allowed the original sites of the UB raw earth to be identifie

    Development and Application of Sub-Mitochondrial Targeted Ca2 + Biosensors

    No full text
    Mitochondrial Ca2+ uptake into the mitochondrial matrix is a well-established mechanism. However, the sub-organellar Ca2+ kinetics remain elusive. In the present work we identified novel site-specific targeting sequences for the intermembrane space (IMS) and the cristae lumen (CL). We used these novel targeting peptides to develop green- and red- Ca2+ biosensors targeted to the IMS and to the CL. Based on their distinctive spectral properties, and comparable sensitivities these novel constructs were suitable to visualize Ca2+-levels in various (sub) compartments in a multi-chromatic manner. Functional studies that applied these new biosensors revealed that knockdown of MCU and EMRE yielded elevated Ca2+ levels inside the CL but not the IMS in response to IP3-generating agonists. Knockdown of VDAC1, however, strongly impeded the transfer of Ca2+ through the OMM while the cytosolic Ca2+ signal remained unchanged. The novel sub-mitochondrially targeted Ca2+ biosensors proved to be suitable for Ca2+ imaging with high spatial and temporal resolution in a multi-chromatic manner allowing simultaneous measurements. These informative biosensors will facilitate efforts to dissect the complex sub-mitochondrial Ca2+ signaling under (patho)physiological conditions.ISSN:1662-510

    Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells

    No full text
    Summary: Reprogramming of metabolic pathways determines cell functions and fate. In our work, we have used organelle-targeted ATP biosensors to evaluate cellular metabolic settings with high resolution in real time. Our data indicate that mitochondria dynamically supply ATP for glucose phosphorylation in a variety of cancer cell types. This hexokinase-dependent process seems to be reversed upon the removal of glucose or other hexose sugars. Our data further verify that mitochondria in cancer cells have increased ATP consumption. Similar subcellular ATP fluxes occurred in young mouse embryonic fibroblasts (MEFs). However, pancreatic beta cells, senescent MEFs, and MEFs lacking mitofusin 2 displayed completely different mitochondrial ATP dynamics, indicative of increased oxidative phosphorylation. Our findings add perspective to the variability of the cellular bioenergetics and demonstrate that live cell imaging of mitochondrial ATP dynamics is a powerful tool to evaluate metabolic flexibility and heterogeneity at a single-cell level. : Depaoli et al. show that ATP levels, particularly within mitochondria, are affected in a highly dynamic manner by glucose depletion. Different cell types, including cancer cells, show specific mitochondrial ATP responses. These subcellular ATP signals are used to assess metabolic activity and flexibility at the single-cell level. Keywords: aerobic glycolysis, cancer cell metabolism, aging, ATP, bioenergetics, live cell imaging, mitochondria, mitofusin 2, Warburg effect, mitochondrial respiratio

    Presenilin-1 Established ER-Ca2+ Leak: a Follow Up on Its Importance for the Initial Insulin Secretion in Pancreatic Islets and β-Cells upon Elevated Glucose

    No full text
    BACKGROUND/AIMS: In our recent work, the importance of GSK3β-mediated phosphorylation of presenilin-1 as crucial process to establish a Ca2+ leak in the endoplasmic reticulum and, subsequently, the pre-activation of resting mitochondrial activity in β-cells was demonstrated. The present work is a follow-up and reveals the importance of GSK3β-phosphorylated presenilin-1 for responsiveness of pancreatic islets and β-cells to elevated glucose in terms of cytosolic Ca2+ spiking and insulin secretion. METHODS: Freshly isolated pancreatic islets and the two pancreatic β-cell lines INS-1 and MIN-6 were used. Cytosolic Ca2+ was fluorometrically monitored using Fura-2/AM and cellular insulin content and secretion were measured by ELISA. RESULTS: Our data strengthened our previous findings of the existence of a presenilin-1-mediated ER-Ca2+ leak in β-cells, since a reduction of presenilin-1 expression strongly counteracted the ER Ca2+ leak. Furthermore, our data revealed that cytosolic Ca2+ spiking upon administration of high D-glucose was delayed in onset time and strongly reduced in amplitude and frequency upon siRNA-mediated knock-down of presenilin-1 or the inhibition of GSK3β in the pancreatic β-cells. Moreover, glucose-triggered initial insulin secretion disappeared by depletion from presenilin-1 and inhibition of GSK3β in the pancreatic β-cells and isolated pancreatic islets, respectively. CONCLUSION: These data complement our previous work and demonstrate that the sensitivity of pancreatic islets and β-cells to glucose illustrated as glucose-triggered cytosolic Ca2+ spiking and initial but not long-lasting insulin secretion crucially depends on a strong ER Ca2+ leak that is due to the phosphorylation of presenilin-1 by GSK3β, a phenomenon that might be involved in the development of type 2 diabetes

    Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism

    Get PDF
    Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC

    Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism

    No full text
    Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC
    corecore