63 research outputs found

    Ultra-Low-Dose Whole-Body Computed Tomography Protocol Optimization for Patients With Plasma Cell Disorders: Diagnostic Accuracy and Effective Dose Analysis From a Reference Center

    Get PDF
    BACKGROUND: The whole-body low-dose CT (WBLDCT) is the first-choice imaging technique in patients with suspected plasma cell disorder to assess the presence of osteolytic lesions. We investigated the performances of an optimized protocol, evaluating diagnostic accuracy and effective patient dose reduction using a latest generation scanner. METHODS AND MATERIALS: Retrospective study on 212 patients with plasma cell disorders performed on a 256-row CT scanner. First, WBLDCT examinations were performed using a reference protocol with acquisition parameters obtained from literature. A phantom study was performed for protocol optimization for subsequent exams to minimize dose while maintaining optimal diagnostic accuracy. Images were analyzed by three readers to evaluate image quality and to detect lesions. Effective doses (E) were evaluated for each patient considering the patient dimensions and the tube current modulation. RESULTS: A similar, very good image quality was observed for both protocols by all readers with a good agreement at repeated measures ANOVA test (p>0.05). An excellent inter-rater agreement for lesion detection was achieved obtaining high values of Fleiss’ kappa for all the districts considered (p<0.001). The optimized protocol resulted in a 56% reduction of median DLP (151) mGycm, interquartile range (IQR) 128–188 mGycm vs. 345 mGycm, IQR 302–408 mGycm), of 60% of CTDIvol (2.2 mGy, IQR 1.9–2.7 mGy vs. 0.9 mGy, IQR 0.8–1.2 mGy). The median E value was about 2.6 mSv (IQR 1.7–3.5 mSv) for standard protocol and about 1.5 mSv (IQR 1.4–1.7 mSv) for the optimized one. Dose reduction was statistically significant with p<0.001. CONCLUSIONS: Protocol optimization makes ultra-low-dose WBLDCT feasible on latest generation CT scanners for patients with plasma cell disorders with effective doses inferior to conventional skeletal survey while maintaining excellent image quality and diagnostic accuracy. Dose reduction is crucial in such patients, as they are likely to undergo multiple whole-body CT scans during follow-up

    Diagnostic accuracy of coronary computed tomography angiography for the evaluation of obstructive coronary artery disease in patients referred for transcatheter aortic valve implantation: a systematic review and meta-analysis

    Get PDF
    OBJECTIVE: To evaluate the diagnostic accuracy of coronary computed tomography angiography (CCTA) for the evaluation of obstructive coronary artery disease (CAD) in patients referred for transcatheter aortic valve implantation (TAVI). METHODS: EMBASE, PubMed/MEDLINE, and CENTRAL were searched for studies reporting accuracy of CCTA for the evaluation of obstructive CAD compared with invasive coronary angiography (ICA) as the reference standard. QUADAS-2 tool was used to assess the risk of bias. A bivariate random effects model was used to analyze, pool, and plot the diagnostic performance measurements across studies. Pooled sensitivity, specificity, positive ( + LR) and negative (−LR) likelihood ratio, diagnostic odds ratio (DOR), and hierarchical summary ROC curve (HSROC) were evaluated. Prospero registration number: CRD42021252527. RESULTS: Fourteen studies (2533 patients) were included. In the intention-to-diagnose patient-level analysis, sensitivity and specificity for CCTA were 97% (95% CI: 94–98%) and 68% (95% CI: 56–68%), respectively, and + LR and −LR were 3.0 (95% CI: 2.1–4.3) and 0.05 (95% CI: 0.03 – 0.09), with DOR equal to 60 (95% CI: 30–121). The area under the HSROC curve was 0.96 (95% CI: 0.94–0.98). No significant difference in sensitivity was found between single-heartbeat and other CT scanners (96% (95% CI: 90 – 99%) vs. 97% (95% CI: 94–98%) respectively; p = 0.37), whereas the specificity of single-heartbeat scanners was higher (82% (95% CI: 66–92%) vs. 60% (95% CI: 46 – 72%) respectively; p < 0.0001). Routine CCTA in the pre-TAVI workup could save 41% (95% CI: 34 – 47%) of ICAs if a disease prevalence of 40% is assumed. CONCLUSIONS: CCTA proved an excellent diagnostic accuracy for assessing obstructive CAD in patients referred for TAVI; the use of single-heartbeat CT scanners can further improve these findings. KEY POINTS: ‱ CCTA proved to have an excellent diagnostic accuracy for assessing obstructive CAD in patients referred for TAVI. ‱ Routine CCTA in the pre-TAVI workup could save more than 40% of ICAs. ‱ Single-heartbeat CT scanners had higher specificity than others in the assessment of obstructive CAD in patients referred for TAVI. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-022-08603-y

    Virtual Surgical Planning, 3D-Printing and Customized Bone Allograft for Acute Correction of Severe Genu Varum in Children

    Get PDF
    Complex deformities of lower limbs are frequent in children with genetic or metabolic skeletal disorders. Early correction is frequently required, but it is technically difficult and burdened by complications and recurrence. Herein, we described the case of a 7-year-old girl affected by severe bilateral genu varum due to spondyloepiphyseal dysplasia. The patient was treated by patient-specific osteotomies and customized structural wedge allograft using Virtual Surgical Planning (VSP) and 3D-printed patient-specific instrumentation (PSI). The entire process was performed through an in-hospital 3D-printing Point-of-Care (POC). VSP and 3D-printing applied to pediatric orthopedic surgery may allow personalization of corrective osteotomies and customization of structural allografts by using low-cost in-hospital POC. However, optimal and definitive alignment is rarely achieved in such severe deformities in growing skeleton through a single operation

    Joint Observation of the Galactic Center with MAGIC and CTA-LST-1

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations

    MAGIC and H.E.S.S. detect VHE gamma rays from the blazar OT081 for the first time: a deep multiwavelength study

    Get PDF
    https://pos.sissa.it/395/815/pdfPublished versio

    1-(2-Hydroxy-4,6-dimethylphenyl)-ethanone

    No full text
    In the crystal of the title compound, C10H12O2, there are two symmetry-independent molecules, which are essentially superimposable. Each molecule exhibits an intramolecular OD H ... O hydrogen bond, with O ... O separations of 2.483 (4) and 2.468 (4) Angstrom
    • 

    corecore