7 research outputs found

    Use of computed radiography in the study of an historic painting.

    No full text
    The authors demonstrate the use of radiography in the investigation of an historic painting and describe the potential benefits of computed radiography compared with conventional screen-film radiography. The subject for the comparison was a 16 x 19-foot oil-on-canvas painting, Scipio Africanus Freeing Massiva, by Giovanni Battista Tiepolo. Radiographs of the painting were obtained by using a portable, industrial radiographic unit and both conventional screen-film and photostimulable phosphor plate cassettes. For this investigation, computed radiography had a number of advantages over screen-film radiography, largely due to its wider dynamic range and its capabilities for enhancing the digital images with image processing tools such as magnification, edge enhancement, colorization, and airbrushing. The ability to electronically combine images from the large painting into a single composite image file was extremely valuable, as this technique was much less cumbersome and resulted in much higher quality composite images than could be achieved with conventional radiography. An additional advantage of computed radiography includes the capability to easily archive and transmit these images in a digital format for subsequent review

    Manipulation and Mixing of 200 Femtoliter Droplets in Nanofluidic Channels Using MHz‐Order Surface Acoustic Waves

    No full text
    Controllable manipulation and effective mixing of fluids and colloids at the nanoscale is made exceptionally difficult by the dominance of surface and viscous forces. The use of megahertz (MHz)-order vibration has dramatically expanded in microfluidics, enabling fluid manipulation, atomization, and microscale particle and cell separation. Even more powerful results are found at the nanoscale, with the key discovery of new regimes of acoustic wave interaction with 200 fL droplets of deionized water. It is shown that 40 MHz-order surface acoustic waves can manipulate such droplets within fully transparent, high-aspect ratio, 100 nm tall, 20-130 micron wide, 5-mm long nanoslit channels. By forming traps as locally widened regions along such a channel, individual fluid droplets may be propelled from one trap to the next, split between them, mixed, and merged. A simple theory is provided to describe the mechanisms of droplet transport and splitting
    corecore