5,628 research outputs found

    Thermodynamically Stable One-Component Metallic Quasicrystals

    Full text link
    Classical density-functional theory is employed to study finite-temperature trends in the relative stabilities of one-component quasicrystals interacting via effective metallic pair potentials derived from pseudopotential theory. Comparing the free energies of several periodic crystals and rational approximant models of quasicrystals over a range of pseudopotential parameters, thermodynamically stable quasicrystals are predicted for parameters approaching the limits of mechanical stability of the crystalline structures. The results support and significantly extend conclusions of previous ground-state lattice-sum studies.Comment: REVTeX, 13 pages + 2 figures, to appear, Europhys. Let

    Demixing of colloid-polymer mixtures in poor solvents

    Full text link
    The influence of poor solvent quality on fluid demixing of a model mixture of colloids and nonadsorbing polymers is investigated using density functional theory. The colloidal particles are modelled as hard spheres and the polymer coils as effective interpenetrating spheres that have hard interactions with the colloids. The solvent is modelled as a two-component mixture of a primary solvent, regarded as a background theta-solvent for the polymer, and a cosolvent of point particles that are excluded from both colloids and polymers. Cosolvent exclusion favors overlap of polymers, mimicking the effect of a poor solvent by inducing an effective attraction between polymers. For this model, a geometry-based density functional theory is derived and applied to bulk fluid phase behavior. With increasing cosolvent concentration (worsening solvent quality), the predicted colloid-polymer binodal shifts to lower colloid concentrations, promoting demixing. For sufficiently poor solvent, a reentrant demixing transition is predicted at low colloid concentrations.Comment: 6 pages, 3 figure
    • …
    corecore