2,634 research outputs found
Charge Renormalization, Effective Interactions, and Thermodynamics of Deionized Colloidal Suspensions
Thermodynamic properties of charge-stabilised colloidal suspensions depend
sensitively on the effective charge of the macroions, which can be
substantially lower than the bare charge in the case of strong
counterion-macroion association. A theory of charge renormalization is
proposed, combining an effective one-component model of charged colloids with a
thermal criterion for distinguishing between free and associated counterions.
The theory predicts, with minimal computational effort, osmotic pressures of
deionized suspensions of highly charged colloids in close agreement with
large-scale simulations of the primitive model.Comment: 15 pages, 7 figure
Poisson-Boltzmann Theory of Charged Colloids: Limits of the Cell Model for Salty Suspensions
Thermodynamic properties of charge-stabilised colloidal suspensions are
commonly modeled by implementing the mean-field Poisson-Boltzmann (PB) theory
within a cell model. This approach models a bulk system by a single macroion,
together with counterions and salt ions, confined to a symmetrically shaped,
electroneutral cell. While easing solution of the nonlinear PB equation, the
cell model neglects microion-induced correlations between macroions, precluding
modeling of macroion ordering phenomena. An alternative approach, avoiding
artificial constraints of cell geometry, maps a macroion-microion mixture onto
a one-component model of pseudo-macroions governed by effective interactions.
In practice, effective-interaction models are usually based on linear screening
approximations, which can accurately describe nonlinear screening only by
incorporating an effective (renormalized) macroion charge. Combining charge
renormalization and linearized PB theories, in both the cell model and an
effective-interaction (cell-free) model, we compute osmotic pressures of highly
charged colloids and monovalent microions over a range of concentrations. By
comparing predictions with primitive model simulation data for salt-free
suspensions, and with predictions of nonlinear PB theory for salty suspensions,
we chart the limits of both the cell model and linear-screening approximations
in modeling bulk thermodynamic properties. Up to moderately strong
electrostatic couplings, the cell model proves accurate in predicting osmotic
pressures of deionized suspensions. With increasing salt concentration,
however, the relative contribution of macroion interactions grows, leading
predictions of the cell and effective-interaction models to deviate. No
evidence is found for a liquid-vapour phase instability driven by monovalent
microions. These results may guide applications of PB theory to soft materials.Comment: 27 pages, 5 figures, special issue of Journal of Physics: Condensed
Matter on "Classical density functional theory methods in soft and hard
matter
Mixtures of Charged Colloid and Neutral Polymer: Influence of Electrostatic Interactions on Demixing and Interfacial Tension
The equilibrium phase behavior of a binary mixture of charged colloids and
neutral, non-adsorbing polymers is studied within free-volume theory. A model
mixture of charged hard-sphere macroions and ideal, coarse-grained,
effective-sphere polymers is mapped first onto a binary hard-sphere mixture
with non-additive diameters and then onto an effective Asakura-Oosawa model [S.
Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is
defined by a single dimensionless parameter -- the ratio of the polymer
diameter to the effective colloid diameter. For high salt-to-counterion
concentration ratios, a free-volume approximation for the free energy is used
to compute the fluid phase diagram, which describes demixing into colloid-rich
(liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic
interactions shifts the demixing binodal toward higher polymer concentration,
stabilizing the mixture. The enhanced stability is attributed to a weakening of
polymer depletion-induced attraction between electrostatically repelling
macroions. Comparison with predictions of density-functional theory reveals a
corresponding increase in the liquid-vapor interfacial tension. The predicted
trends in phase stability are consistent with observed behavior of
protein-polysaccharide mixtures in food colloids.Comment: 16 pages, 5 figure
Electroneutrality and Phase Behavior of Colloidal Suspensions
Several statistical mechanical theories predict that colloidal suspensions of
highly charged macroions and monovalent microions can exhibit unusual
thermodynamic phase behavior when strongly deionized. Density-functional,
extended Debye-H\"uckel, and response theories, within mean-field and
linearization approximations, predict a spinodal phase instability of charged
colloids below a critical salt concentration. Poisson-Boltzmann cell model
studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate
that effective interactions and osmotic pressures predicted by such theories
can be sensitive to the choice of reference system, e.g., whether the microion
density profiles are expanded about the average potential of the suspension or
about the reservoir potential. By unifying Poisson-Boltzmann and response
theories within a common perturbative framework, it is shown here that the
choice of reference system is dictated by the constraint of global
electroneutrality. On this basis, bulk suspensions are best modeled by
density-dependent effective interactions derived from a closed reference system
in which the counterions are confined to the same volume as the macroions.
Linearized theories then predict bulk phase separation of deionized suspensions
only when expanded about a physically consistent (closed) reference system.
Lower-dimensional systems (e.g., monolayers, small clusters), depending on the
strength of macroion-counterion correlations, may be governed instead by
density-independent effective interactions tied to an open reference system
with counterions dispersed throughout the reservoir, possibly explaining
observed structural crossover in colloidal monolayers and anomalous
metastability of colloidal crystallites.Comment: 12 pages, 5 figures. Discussion clarified, references adde
Equation of state of charged colloidal suspensions and its dependence on the thermodynamic route
The thermodynamic properties of highly charged colloidal suspensions in
contact with a salt reservoir are investigated in the framework of the
Renormalized Jellium Model (RJM). It is found that the equation of state is
very sensitive to the particular thermodynamic route used to obtain it.
Specifically, the osmotic pressure calculated within the RJM using the contact
value theorem can be very different from the pressure calculated using the
Kirkwood-Buff fluctuation relations. On the other hand, Monte Carlo (MC)
simulations show that both the effective pair potentials and the correlation
functions are accurately predicted by the RJM. It is suggested that the lack of
self-consistency in the thermodynamics of the RJM is a result of neglected
electrostatic correlations between the counterions and coions
Stability of Colloidal Quasicrystals
Freezing of charge-stabilized colloidal suspensions and relative stabilities
of crystals and quasicrystals are studied using thermodynamic perturbation
theory. Macroion interactions are modelled by effective pair potentials
combining electrostatic repulsion with polymer-depletion or van der Waals
attraction. Comparing free energies -- counterion terms included -- for
elementary crystals and rational approximants to icosahedral quasicrystals,
parameters are identified for which one-component quasicrystals are stabilized
by a compromise between packing entropy and cohesive energy.Comment: 6 pages, 4 figure
Random-Matrix Theory of Quantum Size Effects on Nuclear Magnetic Resonance in Metal Particles
The distribution function of the local density of states is computed exactly
for the Wigner-Dyson ensemble of random Hamiltonians. In the absence of
time-reversal symmetry, precise agreement is obtained with the "supersymmetry"
theory by Efetov and Prigodin of the NMR lineshape in disordered metal
particles. Upon breaking time-reversal symmetry, the variance of the Knight
shift in the smallest particles is reduced by a universal factor of 2/3. ***To
be published in Physical Review B.****Comment: 4 pages, REVTeX-3.0, 1 postscript figure, INLO-PUB-940819; [2017:
figure included in text
Fluorescence from a few electrons
Systems containing few Fermions (e.g., electrons) are of great current
interest. Fluorescence occurs when electrons drop from one level to another
without changing spin. Only electron gases in a state of equilibrium are
considered. When the system may exchange electrons with a large reservoir, the
electron-gas fluorescence is easily obtained from the well-known Fermi-Dirac
distribution. But this is not so when the number of electrons in the system is
prevented from varying, as is the case for isolated systems and for systems
that are in thermal contact with electrical insulators such as diamond. Our
accurate expressions rest on the assumption that single-electron energy levels
are evenly spaced, and that energy coupling and spin coupling between electrons
are small. These assumptions are shown to be realistic for many systems.
Fluorescence from short, nearly isolated, quantum wires is predicted to drop
abruptly in the visible, a result not predicted by the Fermi-Dirac
distribution. Our exact formulas are based on restricted and unrestricted
partitions of integers. The method is considerably simpler than the ones
proposed earlier, which are based on second quantization and contour
integration.Comment: 10 pages, 3 figures, RevTe
Phase Separation in Charge-Stabilized Colloidal Suspensions: Influence of Nonlinear Screening
The phase behavior of charge-stabilized colloidal suspensions is modeled by a
combination of response theory for electrostatic interparticle interactions and
variational theory for free energies. Integrating out degrees of freedom of the
microions (counterions, salt ions), the macroion-microion mixture is mapped
onto a one-component system governed by effective macroion interactions. Linear
response of microions to the electrostatic potential of the macroions results
in a screened-Coulomb (Yukawa) effective pair potential and a one-body volume
energy, while nonlinear response modifies the effective interactions [A. R.
Denton, \PR E {\bf 70}, 031404 (2004)]. The volume energy and effective pair
potential are taken as input to a variational free energy, based on
thermodynamic perturbation theory. For both linear and first-order nonlinear
effective interactions, a coexistence analysis applied to aqueous suspensions
of highly charged macroions and monovalent microions yields bulk separation of
macroion-rich and macroion-poor phases below a critical salt concentration, in
qualitative agreement with predictions of related linearized theories [R. van
Roij, M. Dijkstra, and J.-P. Hansen, \PR E {\bf 59}, 2010 (1999); P. B. Warren,
\JCP {\bf 112}, 4683 (2000)]. It is concluded that nonlinear screening can
modify phase behavior but does not necessarily suppress bulk phase separation
of deionized suspensions.Comment: 14 pages of text + 9 figure
Nonlinear Screening and Effective Electrostatic Interactions in Charge-Stabilized Colloidal Suspensions
A nonlinear response theory is developed and applied to electrostatic
interactions between spherical macroions, screened by surrounding microions, in
charge-stabilized colloidal suspensions. The theory describes leading-order
nonlinear response of the microions (counterions, salt ions) to the
electrostatic potential of the macroions and predicts microion-induced
effective many-body interactions between macroions. A linear response
approximation [Phys. Rev. E 62, 3855 (2000)] yields an effective pair potential
of screened-Coulomb (Yukawa) form, as well as a one-body volume energy, which
contributes to the free energy. Nonlinear response generates effective
many-body interactions and essential corrections to both the effective pair
potential and the volume energy. By adopting a random-phase approximation (RPA)
for the response functions, and thus neglecting microion correlations,
practical expressions are derived for the effective pair and triplet potentials
and for the volume energy. Nonlinear screening is found to weaken repulsive
pair interactions, induce attractive triplet interactions, and modify the
volume energy. Numerical results for monovalent microions are in good agreement
with available ab initio simulation data and demonstrate that nonlinear effects
grow with increasing macroion charge and concentration and with decreasing salt
concentration. In the dilute limit of zero macroion concentration,
leading-order nonlinear corrections vanish. Finally, it is shown that nonlinear
response theory, when combined with the RPA, is formally equivalent to the
mean-field Poisson-Boltzmann theory and that the linear response approximation
corresponds, within integral-equation theory, to a linearized hypernetted-chain
closure.Comment: 30 pages, 8 figures, Phys. Rev. E (in press
- …