84 research outputs found

    Ciliary microtubule capping structures contain a mammalian kinetochore antigen

    Get PDF
    This is the publisher's version, also available electronically from http://jcb.rupress.org/content/110/3/703.Structures that cap the plus ends of microtubules may be involved in the regulation of their assembly and disassembly. Growing and disassembling microtubules in the mitotic apparatus are capped by kinetochores and ciliary and flagellar microtubules are capped by the central microtubule cap and distal filaments. To compare the ciliary caps with kinetochores, isolated Tetrahymena cilia were stained with CREST (Calcinosis/phenomenon esophageal dysmotility, sclerodactyly, telangiectasia) antisera known to stain kinetochores. Immunofluorescence microscopy revealed that a CREST antiserum stained the distal tips of cilia that contained capping structures but did not stain axonemes that lacked capping structures. Both Coomassie blue-stained gels and Western blots probed with CREST antiserum revealed that a 97-kD antigen copurifies with the capping structures. Affinity-purified antibodies to the 97-kD ciliary protein stained the tips of cap-containing Tetrahymena cilia and the kinetochores in HeLa, Chinese hamster ovary, and Indian muntjak cells. These results suggest that at least one polypeptide found in the kinetochore is present in ciliary microtubule capping structures and that there may be a structural and/or functional homology between these structures that cap the plus ends of microtubules

    A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption

    Get PDF
    Author Posting. Ā© American Society for Cell Biology, 2008. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 19 (2008): 4319-4327, doi:10.1091/mbc.E08-05-0470.During intraflagellar transport (IFT), the regulation of motor proteins, the loading and unloading of cargo and the turnover of flagellar proteins all occur at the flagellar tip. To begin an analysis of the protein composition of the flagellar tip, we used difference gel electrophoresis to compare long versus short (i.e., regenerating) flagella. The concentration of tip proteins should be higher relative to that of tubulin (which is constant per unit length of the flagellum) in short compared with long flagella. One protein we have identified is the cobalamin-independent form of methionine synthase (MetE). Antibodies to MetE label flagella in a punctate pattern reminiscent of IFT particle staining, and immunoblot analysis reveals that the amount of MetE in flagella is low in full-length flagella, increased in regenerating flagella, and highest in resorbing flagella. Four methylated proteins have been identified in resorbing flagella, using antibodies specific for asymmetrically dimethylated arginine residues. These proteins are found almost exclusively in the axonemal fraction, and the methylated forms of these proteins are essentially absent in full-length and regenerating flagella. Because most cells resorb cilia/flagella before cell division, these data indicate a link between flagellar protein methylation and progression through the cell cycle.This work was supported by National Institutes of Health Grant DK071720 (R.D.S.) and National Science Foundation Grant MCB 0418877 (R.D.S.)

    Can environment or allergy explain international variation in prevalence of wheeze in childhood?

    Get PDF
    Asthma prevalence in children varies substantially around the world, but the contribution of known risk factors to this international variation is uncertain. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Two studied 8ā€“12 year old children in 30 centres worldwide with parent-completed symptom and risk factor questionnaires and aeroallergen skin prick testing. We used multilevel logistic regression modelling to investigate the effect of adjustment for individual and ecological risk factors on the between-centre variation in prevalence of recent wheeze. Adjustment for single individual-level risk factors changed the centre-level variation from a reduction of up to 8.4% (and 8.5% for atopy) to an increase of up to 6.8%. Modelling the 11 most influential environmental factors among all children simultaneously, the centre-level variation changed little overall (2.4% increase). Modelling only factors that decreased the variance, the 6 most influential factors (synthetic and feather quilt, motherā€™s smoking, heating stoves, dampness and foam pillows) in combination resulted in a 21% reduction in variance. Ecological (centre-level) risk factors generally explained higher proportions of the variation than did individual risk factors. Single environmental factors and aeroallergen sensitisation measured at the individual (child) level did not explain much of the between-centre variation in wheeze prevalence
    • ā€¦
    corecore