51 research outputs found

    Superparamagnetic Nanoparticles: A Biodistribution Study Using Xenopus laevis Embryos

    Get PDF
    Various in-vivo biological models have been proposed for studying the interactions of nanomaterials with biological systems. Recently, there has been a significant increase in interest in the use of non-mammalian embryos, such as the frog Xenopus laevis as valid models for research in nanomedicine. In the present work, we demonstrate that X. laevis is a powerful model for the study of the biodistribution of superparamagnetic nanoparticles (SPION), extensively used in biomedical field for cell separation, MRI diagnostics and magnetic drug-targeting. 10 nl of 25 mg/ml of SPIONs (nano-screen MAG/ARA 200 nm, Chemicell) were microinjected. The biodistribution of SPIONs, following cardiac or pronephros injection of anesthetized frog larvae at stage 37, was studied by both in-vivo florescence and by Prussian blue staining of paraffin sections of the larvae after 24, 48, 72 or 96 hours (at 14 °C). The study confirmed that SPIONs diffused from either injection site by blood stream to all larval organs, being still present after 96 hours of injection

    pdzrn3 is required for pronephros morphogenesis in Xenopus laevis

    Get PDF
    Pdzrn3, a multidomain protein with E3-ubiquitin ligase activity, has been reported to play a role in myoblast and osteoblast differentiation and, more recently, in neuronal and endothelial cell development. The expression of the pdzrn3 gene is developmentally regulated in various vertebrate tissues, including muscular, neural and vascular system. Little is known about its expression during kidney development, although genetic polymorphisms and alterations around the human pdzrn3 chromosomal region have been found to be associated with renal cell carcinomas and other kidney diseases. We investigated the pdzrn3 spatio-temporal expression pattern in Xenopus laevis embryos by in situ hybridization. We focused our study on the development of the pronephros, which is the embryonic amphibian kidney, functionally similar to the most primitive nephric structures of human kidney. To explore the role of pdzrn3 during renal morphogenesis, we performed loss-of-function experiments, through antisense morpholino injections and analysed the morphants using specific pronephric markers. Dynamic pdzrn3 expression was observed in embryonic tissues, such as somites, brain, eye, blood islands, heart, liver and pronephros. Loss of function experiments resulted in specific alterations of pronephros development. In particular, at early stages, pdzrn3 depletion was associated with a reduction of the pronephros anlagen and later, with perturbations of the tubulogenesis, including deformation of the proximal tubules. Rescue experiments, in which mRNA of the zebrafish pdzrn3 orthologue was injected together with the morpholino, allowed recovery of the kidney phenotypes. These results underline the importance of pdzrn3 expression for correct nephrogenesis

    Magnetic nanoparticles: a strategy to target the choroidal layer in the posterior segment of the eye

    Get PDF
    Despite the higher rate of blindness due to population aging, minimally invasive and selective drug delivery to the eye still remains an open challenge, especially in the posterior segment. The retina, the retinal pigment epithelium (RPE) and the choroid are posterior segment cell layers, which may be affected by several diseases. In particular, damages to the choroid are associated with poor prognosis in the most severe pathologies. A drug delivery approach, able to target the choroid, is still missing. Recently, we demonstrated that intravitreally injected magnetic nanoparticles (MNP) are able to rapidly and persistently localise within the RPE in an autonomous manner. In this work we functionalised the MNP surface with the vascular endothelial growth factor, a bioactive molecule capable of transcytosis from the RPE towards more posterior layers. Such functionalisation successfully addressed the MNPs to the choroid, while MNP functionalised with a control polypeptide (poly-L-lysine) showed the same localisation pattern of the naked MNP particles. These data suggest that the combination of MNP with different bioactive molecules could represent a powerful strategy for cell-specific targeting of the eye posterior segment

    Contribution of the different modules in the utrophin carboxy-terminal region to the formation and regulation of the DAP complex

    Get PDF
    AbstractThe carboxy-terminal region of utrophin, like the homologous proteins dystrophin, Drp2 and dystrobrevins, contains structural domains frequently involved in protein–protein interaction. These domains (WW, EF hands, ZZ and H1–H2) mediate recognition and binding to a multicomponent complex of proteins, also known as dystrophin-associated proteins (DAPs) for their association with dystrophin, the product of the gene, mutated in Duchenne muscular dystrophy. We have exploited phage display and in vitro binding assays to study the recognition specificity of the different domains of the utrophin carboxy-terminus. We found that none of the carboxy-terminal domains of utrophin, when isolated from its structural context, selects specific ligand peptides from a phage-displayed peptide library. By contrast, panning with an extended region containing the WW, EF hands, and ZZ domain defines the consensus binding motif, PPxY which is also found in β-dystroglycan, a component of the DAP complex that interacts with utrophin in several tissues. WW-mediated binding to PPxY peptides and to β-dystroglycan requires the presence of the EF hands and ZZ domain. When the ZZ domain is either deleted or engaged in binding to calmodulin, the utrophin β-dystroglycan complex cannot be formed. These findings suggest a potential regulatory mechanism by means of which the attachment of utrophin to the DAP complex can be modulated by the Ca2+-dependent binding of calmodulin. The remaining two motifs found in the carboxy-terminus (H1–H2) mediate the formation of utrophin–dystrobrevin hybrids but do not select ligands in a repertoire of random nonapeptides

    Neurotrophin-conjugated nanoparticles prevent retina damage induced by oxidative stress

    Get PDF
    Glaucoma and other optic neuropathies are characterized by a loss of retinal ganglion cells (RGCs), a cell layer located in the posterior eye segment. Several preclinical studies demonstrate that neurotrophins (NTs) prevent RGC loss. However, NTs are rarely investigated in the clinic due to various issues, such as difficulties in reaching the retina, the very short half-life of NTs, and the need for multiple injections. We demonstrate that NTs can be conjugated to magnetic nanoparticles (MNPs), which act as smart drug carriers. This combines the advantages of the self-localization of the drug in the retina and drug protection from fast degradation. We tested the nerve growth factor and brain-derived neurotrophic factor by comparing the neuroprotection of free versus conjugated proteins in a model of RGC loss induced by oxidative stress. Histological data demonstrated that the conjugated proteins totally prevented RGC loss, in sharp contrast to the equivalent dose of free proteins, which had no effect. The overall data suggest that the nanoscale MNP-protein hybrid is an excellent tool in implementing ocular drug delivery strategies for neuroprotection and therapy

    Nano-topography:Quicksand for cell cycle progression?

    Get PDF
    The 3-D spatial and mechanical features of nano-topography can create alternative environments, which influence cellular response. In this paper, murine fibroblast cells were grown on surfaces characterized by protruding nanotubes. Cells cultured on such nano-structured surface exhibit stronger cellular adhesion compared to control groups, but despite the fact that stronger adhesion is generally believed to promote cell cycle progression, the time cells spend in G1 phase is doubled. This apparent contradiction is solved by confocal microscopy analysis, which shows that the nano-topography inhibits actin stress fiber formation. In turn, this impairs RhoA activation, which is required to suppress the inhibition of cell cycle progression imposed by p21/p27. This finding suggests that the generation of stress fibers, required to impose the homeostatic intracellular tension, rather than cell adhesion/spreading is the limiting factor for cell cycle progression. Indeed, nano-topography could represent a unique tool to inhibit proliferation in adherent well-spread cells

    The SH3 Domains of Endophilin and Amphiphysin Bind to the Proline-rich Region of Synaptojanin 1 at Distinct Sites That Display an Unconventional Binding Specificity

    Get PDF
    The proline-rich domain of synaptojanin 1, a synaptic protein with phosphatidylinositol phosphatase activity, binds to amphiphysin and to a family of recently discovered proteins known as the SH3p4/8/13, the SH3-GL, or the endophilin family. These interactions are mediated by SH3 domains and are believed to play a regulatory role in synaptic vesicle recycling. We have precisely mapped the target peptides on human synaptojanin that are recognized by the SH3 domains of endophilins and amphiphysin and proven that they are distinct. By a combination of different approaches, selection of phage displayed peptide libraries, substitution analyses of peptides synthesized on cellulose membranes, and a peptide scan spanning a 252-residue long synaptojanin fragment, we have concluded that amphiphysin binds to two sites, PIRPSR and PTIPPR, whereas endophilin has a distinct preferred binding site, PKRPPPPR. The comparison of the results obtained by phage display and substitution analysis permitted the identification of proline and arginine at positions 4 and 6 in the PIRPSR and PTIPPR target sequence as the major determinants of the recognition specificity mediated by the SH3 domain of amphiphysin 1. More complex is the structural rationalization of the preferred endophilin ligands where SH3 binding cannot be easily interpreted in the framework of the "classical" type I or type II SH3 binding models. Our results suggest that the binding repertoire of SH3 domains may be more complex than originally predicted

    Zebrafish Patient-Derived Xenograft Model to Predict Treatment Outcomes of Colorectal Cancer Patients

    Get PDF
    The use of zebrafish embryos for personalized medicine has become increasingly popular. We present a co-clinical trial aiming to evaluate the use of zPDX (zebrafish Patient-Derived Xenografts) in predicting the response to chemotherapy regimens used for colorectal cancer patients. zPDXs are generated by xenografting tumor tissues in two days post-fertilization zebrafish embryos. zPDXs were exposed to chemotherapy regimens (5-FU, FOLFIRI, FOLFOX, FOLFOXIRI) for 48 h. We used a linear mixed effect model to evaluate the zPDX-specific response to treatments showing for 4/36 zPDXs (11%), a statistically significant reduction of tumor size compared to controls. We used the RECIST criteria to compare the outcome of each patient after chemotherapy with the objective response of its own zPDX model. Of the 36 patients enrolled, 8 metastatic colorectal cancer (mCRC), response rate after first-line therapy, and the zPDX chemosensitivity profile were available. Of eight mCRC patients, five achieved a partial response and three had a stable disease. In 6/8 (75%) we registered a concordance between the response of the patient and the outcomes reported in the corresponding zPDX. Our results provide evidence that the zPDX model can reflect the outcome in mCRC patients, opening a new frontier to personalized medicine
    • …
    corecore