231 research outputs found

    Analysis of eta production using a generalized Lee model

    Get PDF
    We have investigated the processes N(π\pi, π\pi)N and N(π\pi, η\eta)N close to eta threshold using a simple, nonrelativistic Lee model which has the advantage of being analytically solvable. It is then possible to study the Riemann sheets of the S-matrix and the behavior of its resonance poles especially close to threshold. A theoretical simulation of the experimental cusp effect at eta threshold leads to a characteristic distribution of poles on the Riemann sheets. We find a pole located in the 4th4^{th} Riemann sheet that up to now has not been discussed. It belongs to the cusp peak at eta threshold. In addition we obtain the surprising result using the Lee model that the resonance S11(1535)S_{11}(1535) does not play a large role. The main features of the experimental data can be reproduced without explicitly introducing this resonance. Furthermore, we have also studied the reactions N(γ\gamma, π\pi)N and N(γ\gamma, η\eta)N and find reasonable agreement between the data and both models with and without the S11(1535)S_{11}(1535) resonance.Comment: 17 pages LATEX including 13 Figurs, submitted to Z. Phys.

    A waveguide atom beamsplitter for laser-cooled neutral atoms

    Get PDF
    A laser-cooled neutral-atom beam from a low-velocity intense source is split into two beams while guided by a magnetic-field potential. We generate our multimode-beamsplitter potential with two current-carrying wires on a glass substrate combined with an external transverse bias field. The atoms bend around several curves over a 1010-cm distance. A maximum integrated flux of 1.5105atoms/s1.5\cdot10^{5} \mathrm{atoms/s} is achieved with a current density of 5104Ampere/cm25\cdot10^{4} \mathrm{Ampere/cm^{2}} in the 100-μm\mathrm{\mu m} diameter wires. The initial beam can be split into two beams with a 50/50 splitting ratio

    Cruising through molecular bound state manifolds with radio frequency

    Full text link
    The emerging field of ultracold molecules with their rich internal structure is currently attracting a lot of interest. Various methods have been developed to produce ultracold molecules in pre-set quantum states. For future experiments it will be important to efficiently transfer these molecules from their initial quantum state to other quantum states of interest. Optical Raman schemes are excellent tools for transfer, but can be involved in terms of equipment, laser stabilization and finding the right transitions. Here we demonstrate a very general and simple way for transfer of molecules from one quantum state to a neighboring quantum state with better than 99% efficiency. The scheme is based on Zeeman tuning the molecular state to avoided level crossings where radio-frequency transitions can then be carried out. By repeating this process at different crossings, molecules can be successively transported through a large manifold of quantum states. As an important spin-off of our experiments, we demonstrate a high-precision spectroscopy method for investigating level crossings.Comment: 5 pages, 5 figures, submitted for publicatio

    Guiding Neutral Atoms with a Wire

    Get PDF
    We demonstrate guiding of cold neutral atoms along a current carrying wire. Atoms either move in Kepler-like orbits around the wire or are guided in a potential tube on the side of the wire which is created by applying an additional homogeneous bias field. These atom guides are very versatile and promising for applications in atom optics.Comment: 4 pages, 6 figures, submitted to PR

    Reflection of Channel-Guided Solitons at Junctions in Two-Dimensional Nonlinear Schroedinger Equation

    Full text link
    Solitons confined in channels are studied in the two-dimensional nonlinear Schr\"odinger equation. We study the dynamics of two channel-guided solitons near the junction where two channels are merged. The two solitons merge into one soliton, when there is no phase shift. If a phase difference is given to the two solitons, the Josephson oscillation is induced. The Josephson oscillation is amplified near the junction. The two solitons are reflected when the initial velocity is below a critical value.Comment: 3 pages, 2 figure

    Atom-molecule dark states in a Bose-Einstein condensate

    Full text link
    We have created a dark quantum superposition state of a Rb Bose-Einstein condensate (BEC) and a degenerate gas of Rb2_2 ground state molecules in a specific ro-vibrational state using two-color photoassociation. As a signature for the decoupling of this coherent atom-molecule gas from the light field we observe a striking suppression of photoassociation loss. In our experiment the maximal molecule population in the dark state is limited to about 100 Rb2_2 molecules due to laser induced decay. The experimental findings can be well described by a simple three mode model.Comment: 4 pages, 6 figure

    Atom Chips

    Get PDF
    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems

    Discrete-step evaporation of an atomic beam

    Full text link
    We present a theoretical analysis of the evaporative cooling of a magnetically guided atomic beam by means of discrete radio-frequency antennas. First we derive the changes in flux and temperature, as well as in collision rate and phase-space density, for a single evaporation step. Next we show how the occurrence of collisions during the propagation between two successive antennas can be probed. Finally, we discuss the optimization of the evaporation ramp with several antennas to reach quantum degeneracy. We estimate the number of antennas required to increase the phase-space density by several orders of magnitude. We find that at least 30 antennas are needed to gain a factor 10810^8 in phase-space density.Comment: Submitted to Eur. Phys. J.

    Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms

    Full text link
    We report on the production of a pure sample of up to 3x10^5 optically trapped molecules from a Fermi gas of 6Li atoms. The dimers are formed by three-body recombination near a Feshbach resonance. For purification a Stern-Gerlach selection technique is used that efficiently removes all trapped atoms from the atom-molecule mixture. The behavior of the purified molecular sample shows a striking dependence on the applied magnetic field. For very weakly bound molecules near the Feshbach resonance, the gas exhibits a remarkable stability with respect to collisional decay.Comment: 4 pages, 5 figure
    corecore