5 research outputs found

    Counting Complex Disordered States by Efficient Pattern Matching: Chromatic Polynomials and Potts Partition Functions

    Full text link
    Counting problems, determining the number of possible states of a large system under certain constraints, play an important role in many areas of science. They naturally arise for complex disordered systems in physics and chemistry, in mathematical graph theory, and in computer science. Counting problems, however, are among the hardest problems to access computationally. Here, we suggest a novel method to access a benchmark counting problem, finding chromatic polynomials of graphs. We develop a vertex-oriented symbolic pattern matching algorithm that exploits the equivalence between the chromatic polynomial and the zero-temperature partition function of the Potts antiferromagnet on the same graph. Implementing this bottom-up algorithm using appropriate computer algebra, the new method outperforms standard top-down methods by several orders of magnitude, already for moderately sized graphs. As a first application, we compute chromatic polynomials of samples of the simple cubic lattice, for the first time computationally accessing three-dimensional lattices of physical relevance. The method offers straightforward generalizations to several other counting problems.Comment: 7 pages, 4 figure

    The Higher Derivative Expansion of the Effective Action by the String-Inspired Method, Part I

    Full text link
    The higher derivative expansion of the one-loop effective action for an external scalar potential is calculated to order O(T**7), using the string-inspired Bern-Kosower method in the first quantized path integral formulation. Comparisons are made with standard heat kernel calculations and with the corresponding Feynman diagrammatic calculation in order to show the efficiency of the present method.Comment: 13 pages, Plain TEX, 1 figure may be obtained from the authors, HD-THEP-93-4
    corecore