297 research outputs found

    Triplet Exciton Generation in Bulk-Heterojunction Solar Cells based on Endohedral Fullerenes

    Full text link
    Organic bulk-heterojunctions (BHJ) and solar cells containing the trimetallic nitride endohedral fullerene 1-[3-(2-ethyl)hexoxy carbonyl]propyl-1-phenyl-Lu3N@C80 (Lu3N@C80-PCBEH) show an open circuit voltage (VOC) 0.3 V higher than similar devices with [6,6]-phenyl-C[61]-butyric acid methyl ester (PC61BM). To fully exploit the potential of this acceptor molecule with respect to the power conversion efficiency (PCE) of solar cells, the short circuit current (JSC) should be improved to become competitive with the state of the art solar cells. Here, we address factors influencing the JSC in blends containing the high voltage absorber Lu3N@C80-PCBEH in view of both photogeneration but also transport and extraction of charge carriers. We apply optical, charge carrier extraction, morphology, and spin-sensitive techniques. In blends containing Lu3N@C80-PCBEH, we found 2 times weaker photoluminescence quenching, remainders of interchain excitons, and, most remarkably, triplet excitons formed on the polymer chain, which were absent in the reference P3HT:PC61BM blends. We show that electron back transfer to the triplet state along with the lower exciton dissociation yield due to intramolecular charge transfer in Lu3N@C80-PCBEH are responsible for the reduced photocurrent

    Decoupling of Lattice and Orbital Degrees of Freedom in an Iron-Pnictide Superconductor

    Full text link
    The interplay of structural and electronic phases in iron-based superconductors is a central theme in the search for the superconducting pairing mechanism. While electronic nematicity, defined as the breaking of four-fold symmetry triggered by electronic degrees of freedom, is competing with superconductivity, the effect of purely structural orthorhombic order is unexplored. Here, using x-ray diffraction (XRD), we reveal a new structural orthorhombic phase with an exceptionally high onset temperature (Tort∟250T_\mathrm{ort} \sim 250 K), which coexists with superconductivity (Tc=25T_\mathrm{c} = 25 K), in an electron-doped iron-pnictide superconductor far from the underdoped region. Furthermore, our angle-resolved photoemission spectroscopy (ARPES) measurements demonstrate the absence of electronic nematic order as the driving mechanism, in contrast to other underdoped iron pnictides where nematicity is commonly found. Our results establish a new, high temperature phase in the phase diagram of iron-pnictide superconductors and impose strong constraints for the modeling of their superconducting pairing mechanism.Comment: SI available upon reques

    Redox-Induced Src Kinase and Caveolin-1 Signaling in TGF-β1-Initiated SMAD2/3 Activation and PAI-1 Expression

    Get PDF
    Plasminogen activator inhibitor-1 (PAI-1), a major regulator of the plasmin-based pericellular proteolytic cascade, is significantly increased in human arterial plaques contributing to vessel fibrosis, arteriosclerosis and thrombosis, particularly in the context of elevated tissue TGF-β1. Identification of molecular events underlying to PAI-1 induction in response to TGF-β1 may yield novel targets for the therapy of cardiovascular disease.Reactive oxygen species are generated within 5 minutes after addition of TGF-β1 to quiescent vascular smooth muscle cells (VSMCs) resulting in pp60(c-src) activation and PAI-1 expression. TGF-β1-stimulated Src kinase signaling sustained the duration (but not the initiation) of SMAD3 phosphorylation in VSMC by reducing the levels of PPM1A, a recently identified C-terminal SMAD2/3 phosphatase, thereby maintaining SMAD2/3 in an active state with retention of PAI-1 transcription. The markedly increased PPM1A levels in triple Src kinase (c-Src, Yes, Fyn)-null fibroblasts are consistent with reductions in both SMAD3 phosphorylation and PAI-1 expression in response to TGF-β1 compared to wild-type cells. Activation of the Rho-ROCK pathway was mediated by Src kinases and required for PAI-1 induction in TGF-β1-stimulated VSMCs. Inhibition of Rho-ROCK signaling blocked the TGF-β1-mediated decrease in nuclear PPM1A content and effectively attenuated PAI-1 expression. TGF-β1-induced PAI-1 expression was undetectable in caveolin-1-null cells, correlating with the reduced Rho-GTP loading and SMAD2/3 phosphorylation evident in TGF-β1-treated caveolin-1-deficient cells relative to their wild-type counterparts. Src kinases, moreover, were critical upstream effectors of caveolin-1(Y14) phosphoryation and initiation of downstream signaling.TGF-β1-initiated Src-dependent caveolin-1(Y14) phosphorylation is a critical event in Rho-ROCK-mediated suppression of nuclear PPM1A levels maintaining, thereby, SMAD2/3-dependent transcription of the PAI-1 gene

    Probing the Interstellar Medium in Early type galaxies with ISO observations

    Get PDF
    Four IRAS-detected early type galaxies were observed with ISO. With the exception of the 15 micron image of NGC1052, the mid-IR emission from NGC1052, NGC1155, NGC5866 and NGC6958 at 4.5, 7 and 15 microns show extended emission. Mid-IR emission from NGC1052, NGC1155, and NGC6958 follows a de Vaucouleurs profile. The ratio of 15/7 micron flux decreases with radius in these galaxies, approaching the values empirically observed for purely stellar systems. In NGC5866, the 7 and 15 micron emission is concentrated in the edge-on dust lane. All the galaxies are detected in the [CII] line, and the S0s NGC1155 and NGC5866 are detected in the [OI] line as well. The ISO-LWS observations of the [CII] line are more sensitive measures of cool, neutral ISM than HI and CO by about a factor of 10-100. Three of four early type galaxies, namely NGC1052, NGC6958 and NGC5866, have low ratio FIR/Blue and show a lower [CII]/FIR, which is due to a softer radiation field from old stellar populations. The low [CII]/CO ratio in NGC5866 ([CII]/CO(1-0) < 570) confirms this scenario. We estimate the UV radiation expected from the old stellar populations in these galaxies and compare it to that needed to heat the gas to account for the cooling observed [CII] and [OI] lines. In three out of four galaxies, NGC1052, NGC5866 and NGC6958, the predicted UV radiation falls short by a factor of 2-3. In view of the observed intrinsic scatter in the "UV-upturn" in elliptical galaxies and its great sensitivity to age and metallicity effects, this is not significant. However, the much larger difference (about a factor of 20) between the UV radiation from old stars and that needed to produce the FIR lines for NGC 1155 is strong evidence for the presence of young stars, in NGC1155.Comment: To appear in the Astrophysical Journal. Figure 1 appears as a separate jpg figur

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    • …
    corecore