1,511 research outputs found

    Using probe electrospray ionization mass spectrometry and machine learning for detecting pancreatic cancer with high performance

    Get PDF
    A rapid blood-based diagnostic modality to detect pancreatic ductal adenocarcinoma (PDAC) with high accuracy is an unmet medical need. The study aimed to validate a unique diagnosis system using Probe Electrospray Ionization Mass Spectrometry (PESI-MS) and Machine Learning to the diagnosis of PDAC. Peripheral blood samples were collected from a total of 322 consecutive PDAC patients and 265 controls with a family history of PDAC. Five ”l of serum samples were analyzed using PESI-MS system. The mass spectra from each specimen were then fed into machine learning algorithms to discriminate between control and cancer cases. A total of 587 serum samples were analyzed. The sensitivity of the machine learning algorithm using PESI-MS profiles to identify PDAC is 90.8% with specificity of 91.7% (95% CI 83.9%-97.4% and 82.8%-97.7% respectively). Combined PESI-MS profiles with age and CA19-9 as predictors, the accuracy for stage 1 or 2 of PDAC is 92.9% and for stage 3 or 4 is 93% (95% CI 86.3-98.2; 87.9-97.4 respectively). The accuracy and simplicity of the PESI-MS profiles combined with machine learning provide an opportunity to detect PDAC at an early stage and must be applicable to the examination of at-risk populations. [Abstract copyright: AJTR Copyright © 2020.

    A Simple Family of Analytical Trumpet Slices of the Schwarzschild Spacetime

    Full text link
    We describe a simple family of analytical coordinate systems for the Schwarzschild spacetime. The coordinates penetrate the horizon smoothly and are spatially isotropic. Spatial slices of constant coordinate time tt feature a trumpet geometry with an asymptotically cylindrical end inside the horizon at a prescribed areal radius R0R_0 (with 0<R0≀M0<R_{0}\leq M) that serves as the free parameter for the family. The slices also have an asymptotically flat end at spatial infinity. In the limit R0=0R_{0}=0 the spatial slices lose their trumpet geometry and become flat -- in this limit, our coordinates reduce to Painlev\'e-Gullstrand coordinates.Comment: 7 pages, 3 figure

    The COMPLETE Nature of the Warm Dust Ring in Perseus

    Full text link
    The Perseus molecular cloud complex is a ~30pc long chain of molecular clouds most well-known for the two star-forming clusters NGC1333 and IC348 and the well-studied outflow source in B5. However, when studied at mid- to far-infrared wavelengths the region is dominated by a ~10pc diameter shell of warm dust, likely generated by an HII region caused by the early B-star HD278942. Using a revised calibration technique the COMPLETE team has produced high-sensitivity temperature and column-density maps of the Perseus region from IRAS Sky Survey Atlas (ISSA) 60 and 100um data. In this paper, we combine the ISSA based dust-emission maps with other observations collected as part of the COMPLETE Survey, along with archival H-alpha and MSX observations. Molecular line observations from FCRAO and extinction maps constructed by applying the NICER method to the 2MASS catalog provide independent estimates of the ``true'' column-density of the shell. H-alpha emission in the region of the shell confirms that it is most likely an HII region located behind the cloud complex, and 8um data from MSX indicates that the shell may be interacting with the cloud. Finally, the two polarisation components previously seen towards background stars in the region can be explained by the association of the stronger component with the shell. If confirmed, this would be the first observation of a parsec-scale swept-up magnetic field.Comment: Accepted by ApJ. Figures have been compressed - full resolution version available at http://cfa-www.harvard.edu/COMPLETE/results.htm

    The Sizes of 1720 MHz OH Masers: VLBA and MERLIN Observations of the Supernova Remnants W44 and W28

    Get PDF
    We have used the NRAO Very Long Baseline Array (VLBA) to image OH(1720 MHz) masers in the supernova remnants W28 and W44 at a resolution of 40 mas. We also used MERLIN to observe the same OH(1720 MHz) masers in W44 at a resolution of 290 x 165 mas. All the masers are resolved by these VLBA and MERLIN observations. The measured sizes range from 50 to 180 mas and yield brightness temperature estimates from 0.3--20 x 10**8 K. We investigate whether these measured angular sizes are intrinsic and hence originate as a result of the physical conditions in the supernova remnant shock, or whether they are scatter broadened sizes produced by the turbulent ionized gas along the line of sight. While the current data on the temporal and angular broadening of pulsars, masers and extragalactic soures toward W44 and W28 can be understood in terms of scattering, we cannot rule out that these large sizes are intrinsic. Recent theoretical modeling by Lockett et al. suggests that the physical parameters in the shocked region are indicative of densities and OH abundances which lead to estimates of sizes as large as what we measure. If the sizes and structure are intrinsic, then the OH(1720 MHz) masrs may be more like the OH(1612 MHz) masers in circumstellar shells than OH masers associated with HII regions. At two locations in W28 we observe the classical S-shapes in the Stokes V profiles caused by Zeeman splitting and use it to infer magnetic fields of order 2 milliGauss.Comment: 24 pages, 6 figures, accepted by Ap

    Entanglement, avoided crossings and quantum chaos in an Ising model with a tilted magnetic field

    Full text link
    We study a one-dimensional Ising model with a magnetic field and show that tilting the field induces a transition to quantum chaos. We explore the stationary states of this Hamiltonian to show the intimate connection between entanglement and avoided crossings. In general entanglement gets exchanged between the states undergoing an avoided crossing with an overall enhancement of multipartite entanglement at the closest point of approach, simultaneously accompanied by diminishing two-body entanglement as measured by concurrence. We find that both for stationary as well as nonstationary states, nonintegrability leads to a destruction of two-body correlations and distributes entanglement more globally.Comment: Corrections in two figure captions and one new reference. To appear in Phys. Rev.

    Design of a ferrite rod antenna for harvesting energy from medium wave broadcast signals

    Get PDF
    Radio frequency (RF) energy harvesting is an emerging technology that has the potential to eliminate the need for batteries and reduce maintenance costs of sensing applications. The antenna is one of the critical components that determines its performance and while antenna design has been well researched for the purpose of communication, the design for RF energy harvesting applications has not been widely addressed. The authors present an optimised design for such an antenna for harvesting energy from medium wave broadcast transmissions. They derive and use a model for computing the optimal antenna configuration given application requirements on output voltage and power, material costs and physical dimensions. Design requirements for powering autonomous smart meters have been considered. The proposed approach was used to obtain the antenna configuration that is able to deliver 1 mW of power to 1 kΩ load at a distance of up to 9 km, sufficient to replace batteries on low-power sensing applications. Measurements using a prototype device have been used to verify the authors simulations

    Triggered Star Formation by Massive Stars

    Full text link
    We present our diagnosis of the role that massive stars play in the formation of low- and intermediate-mass stars in OB associations (the Lambda Ori region, Ori OB1, and Lac OB1 associations). We find that the classical T Tauri stars and Herbig Ae/Be stars tend to line up between luminous O stars and bright-rimmed or comet-shaped clouds; the closer to a cloud the progressively younger they are. Our positional and chronological study lends support to the validity of the radiation-driven implosion mechanism, where the Lyman continuum photons from a luminous O star create expanding ionization fronts to evaporate and compress nearby clouds into bright-rimmed or comet-shaped clouds. Implosive pressure then causes dense clumps to collapse, prompting the formation of low-mass stars on the cloud surface (i.e., the bright rim) and intermediate-mass stars somewhat deeper in the cloud. These stars are a signpost of current star formation; no young stars are seen leading the ionization fronts further into the cloud. Young stars in bright-rimmed or comet-shaped clouds are likely to have been formed by triggering, which would result in an age spread of several megayears between the member stars or star groups formed in the sequence.Comment: 2007, ApJ, 657, 88

    Parallel transport in an entangled ring

    Get PDF
    This paper defines a notion of parallel transport in a lattice of quantum particles, such that the transformation associated with each link of the lattice is determined by the quantum state of the two particles joined by that link. We focus particularly on a one-dimensional lattice--a ring--of entangled rebits, which are binary quantum objects confined to a real state space. We consider states of the ring that maximize the correlation between nearest neighbors, and show that some correlation must be sacrificed in order to have non-trivial parallel transport around the ring. An analogy is made with lattice gauge theory, in which non-trivial parallel transport around closed loops is associated with a reduction in the probability of the field configuration. We discuss the possibility of extending our result to qubits and to higher dimensional lattices.Comment: 31 pages, no figures; v2 includes a new example of a qubit rin

    Entanglement sharing among qudits

    Full text link
    Consider a system consisting of n d-dimensional quantum particles (qudits), and suppose that we want to optimize the entanglement between each pair. One can ask the following basic question regarding the sharing of entanglement: what is the largest possible value Emax(n,d) of the minimum entanglement between any two particles in the system? (Here we take the entanglement of formation as our measure of entanglement.) For n=3 and d=2, that is, for a system of three qubits, the answer is known: Emax(3,2) = 0.550. In this paper we consider first a system of d qudits and show that Emax(d,d) is greater than or equal to 1. We then consider a system of three particles, with three different values of d. Our results for the three-particle case suggest that as the dimension d increases, the particles can share a greater fraction of their entanglement capacity.Comment: 4 pages; v2 contains a new result for 3 qudits with d=
    • 

    corecore