127 research outputs found

    The Role of Keratins in Epidermal Development and Homeostasisβ€”Going Beyond the Obvious

    Get PDF

    Discovery of a novel murine keratin 6 (K6) isoform explains the absence of hair and nail defects in mice deficient for K6a and K6b

    Get PDF
    The murine genome is known to have two keratin 6 (K6) genes, mouse K6 (MK6)a and MK6b. These genes display a complex expression pattern with constitutive expression in the epithelia of oral mucosa, hair follicles, and nail beds. We generated mice deficient for both genes through embryonic stem cell technology. The majority of MK6a/bβˆ’/βˆ’ mice die of starvation within the first two weeks of life. This is due to a localized disintegration of the dorsal tongue epithelium, which results in the build up of a plaque of cell debris that severely impairs feeding. However, ∼25% of MK6a/bβˆ’/βˆ’ mice survive to adulthood. Remarkably, the surviving MK6a/bβˆ’/βˆ’ mice have normal hair and nails. To our surprise, we discovered MK6 staining both in the hair follicle and the nail bed of MK6a/bβˆ’/βˆ’ mice, indicating the presence of a third MK6 gene. We cloned this previously unknown murine keratin gene and found it to be highly homologous to human K6hf, which is expressed in hair follicles. We therefore termed this gene MK6 hair follicle (MK6hf). The presence of MK6hf in the MK6a/bβˆ’/βˆ’ follicles and nails offers an explanation for the absence of hair and nail defects in MK6a/bβˆ’/βˆ’ animals

    Transgenic models of skin diseases

    Get PDF
    Background: Transgenic animals have greatly enhanced our understanding of the contribution of various structural and regulatory components to epidermal biology. The expression of mutant versions of these components in the epidermis of transgenic mice has generated animal models of specific human skin diseases

    Oct-4: The Almighty POUripotent Regulator?

    Get PDF
    Oct-4 plays an essential role as a central regulator of the undifferentiated state. Grinnell et al. demonstrate for the first time that Oct-4 by itself has the ability to reprogram committed somatic cells, inducing their dedifferentiation by reverting them to a more developmentally potent state. This study provides evidence that Oct-4 might be the master regulator of the pluripotent state in mammalian cells

    A mutational hot spot in keratin 10 (KRT 10) in patients with epidermolytic hyperkeratosis

    Get PDF
    Epidermolytic hyperkeratosis (EHK), (bullous congenital ichthyosiform erythroderma), is an autosomal dominant human skin disorder. Recently, we and others have described mutations in keratins 1 and 10 (K1 and K10) in patients with this disease. Structure-function models predict that these mutations would impair normal filament assembly and function. We have extended our earlier studies to include 8 more incidences of EHK. In half of these families, we were unable to locate a mutation within the rod domains of either K1 or K10. However, polymorphic restriction site and sequence analysis of the other families revealed a mutational hot spot within the 1A alpha-helical segment of K10. These involve Arginine to Histidine, Arginine to Cysteine and Arginine to Leucine substitutions at residue 10 of the rod domain. Interestingly, mutations in the corresponding Arginine residue in keratin K14 have been identified in patients with epidermolysis bullosa simplex. The large number of mutations found at this position in both keratins K10 and K14 suggests that other epithelia cell disorders will be discovered that are caused by the corresponding mutation in related type I keratin gene

    Quasi-Normal Cornified Cell Envelopes in Loricrin Knockout Mice Imply the Existence of a Loricrin Backup System

    Get PDF
    The cornified cell envelope, a lipoprotein layer that assembles at the surface of terminally differentiated keratinocytes, is a resilient structure on account of covalent crosslinking of its constituent proteins, principally loricrin, which accounts for up to 60%-80% of total protein. Despite the importance of the cell envelope as a protective barrier, knocking out the loricrin gene in mice results in only mild syndromes. We have investigated the epidermis and forestomach epithelium of these mice by electron microscopy. In both tissues, corneocytes have normal-looking cell envelopes, despite the absence of loricrin, which was confirmed by immunolabeling, and the absence of the distinctive loricrin-containing keratohyalin granules (L-granules). Isolated cell envelopes were normal in thickness (β‰ˆ15 nm) and mass per unit area (β‰ˆ7.3 kDa per nm2); however, metal shadowing revealed an altered substructure on their cytoplasmic surface. Their amino acid compositions indicate altered protein compositions. Analysis of these data implies that the epidermal cell envelopes have elevated levels of the small proline-rich proteins, and cell envelopes of both kinds contain other protein(s) that, like loricrin, are rich in glycine and serine. These observations imply that, in the absence of loricrin, the mechanisms that govern cell envelope assembly function normally but employ different building-blocks
    • …
    corecore