58 research outputs found

    Mitochondrial extracts were isolated from livers of wild-type or SIRT3KO mice fed a standard or ethanol diet for 6-8 weeks and analyzed for total protein acetylation (A), propionylation (B), butyrylation (C), and succinylation (D) by western blot analysis with an acyllysine-specific antibody; normalized to total mitochondrial content using anti-voltage-dependent anion channel (VDAC); n = 4 mice/condition.

    No full text
    <p>Mitochondrial extracts were isolated from livers of wild-type or SIRT3KO mice fed a standard or ethanol diet for 6-8 weeks and analyzed for total protein acetylation (A), propionylation (B), butyrylation (C), and succinylation (D) by western blot analysis with an acyllysine-specific antibody; normalized to total mitochondrial content using anti-voltage-dependent anion channel (VDAC); n = 4 mice/condition.</p

    Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice

    Get PDF
    <div><p>Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific changes in these acyl modifications. These data suggest that protein acylation, beyond protein acetylation, contributes to the overall metabolic regulatory network and could play an important role in the pathogenesis of alcoholic liver disease.</p> </div

    Mitochondria were isolated from livers of wild-type mice fed a standard or ethanol diet for 6-8 weeks and analyzed for mitochondrial protein acetylation (A), propionylation (B), butyrylation (C), and succinylation (D) by western blot analysis with an acyllysine-specific antibody; normalized to total mitochondrial content using anti-electron transfer flavoprotein (ETF); n = 4 mice/condition.

    No full text
    <p>Mitochondria were isolated from livers of wild-type mice fed a standard or ethanol diet for 6-8 weeks and analyzed for mitochondrial protein acetylation (A), propionylation (B), butyrylation (C), and succinylation (D) by western blot analysis with an acyllysine-specific antibody; normalized to total mitochondrial content using anti-electron transfer flavoprotein (ETF); n = 4 mice/condition.</p

    Mitochondria were collected from livers of wild-type mice fed a standard or ethanol diet for 1, 3, or 6 weeks and analyzed for total protein acetylation (A), propionylation (B), and succinylation (C) by western blot analysis with acyllysine-specific antibodies; normalized to total mitochondrial content using anti-voltage-dependent anion channel (VDAC); n = 4 mice/condition.

    No full text
    <p>Mitochondria were collected from livers of wild-type mice fed a standard or ethanol diet for 1, 3, or 6 weeks and analyzed for total protein acetylation (A), propionylation (B), and succinylation (C) by western blot analysis with acyllysine-specific antibodies; normalized to total mitochondrial content using anti-voltage-dependent anion channel (VDAC); n = 4 mice/condition.</p

    Proteomic data summary of all known acylated proteins identified in mitochondrial and non-mitochondrial compartments.

    No full text
    <p>Area represents number of proteins identified in this study (red), compared to previous studies (blue), as acetylated (10:1 scaling), propionylated, and succinylated.</p

    Pathway analyses of acylated proteins.

    No full text
    <p>Unique pathway (in box) and number of acylated proteins identified in that pathway (in parenthesis), divided by major sub-cellular compartments.</p

    Mitochondrial Acetylome Analysis in a Mouse Model of Alcohol-Induced Liver Injury Utilizing SIRT3 Knockout Mice

    No full text
    Mitochondrial protein hyperacetylation is a known consequence of sustained ethanol consumption and has been proposed to play a role in the pathogenesis of alcoholic liver disease (ALD). The mechanisms underlying this altered acetylome, however, remain unknown. The mitochondrial deacetylase sirtuin 3 (SIRT3) is reported to be the major regulator of mitochondrial protein deacetylation and remains a central focus for studies on protein acetylation. To investigate the mechanisms underlying ethanol-induced mitochondrial acetylation, we employed a model for ALD in both wild-type (WT) and SIRT3 knockout (KO) mice using a proteomics and bioinformatics approach. Here, WT and SIRT3 KO groups were compared in a mouse model of chronic ethanol consumption, revealing pathways relevant to ALD, including lipid and fatty acid metabolism, antioxidant response, amino acid biosynthesis and the electron-transport chain, each displaying proteins with altered acetylation. Interestingly, protein hyperacetylation resulting from ethanol consumption and SIRT3 ablation suggests ethanol-induced hyperacetylation targets numerous biological processes within the mitochondria, the majority of which are known to be acetylated through SIRT3-dependent mechanisms. These findings reveal overall increases in 91 mitochondrial targets for protein acetylation, identifying numerous critical metabolic and antioxidant pathways associated with ALD, suggesting an important role for mitochondrial protein acetylation in the pathogenesis of ALD

    Protein Carbonylation in a Murine Model for Early Alcoholic Liver Disease

    No full text
    Hepatic oxidative stress and subsequent lipid peroxidation are well-recognized consequences of sustained ethanol consumption. The covalent adduction of nucleophilic amino acid side-chains by lipid electrophiles is significantly increased in patients with alcoholic liver disease (ALD); a global assessment of <i>in vivo</i> protein targets and the consequences of these modifications, however, has not been conducted. In this article, we describe the identification of novel protein targets for covalent adduction in a 6-week murine model for ALD. Ethanol-fed mice displayed a 2-fold increase in hepatic TBARS, while immunohistochemical analysis for the reactive aldehydes 4-hydroxynonenal (4-HNE), 4-oxononenal (4-ONE), acrolein (ACR), and malondialdehyde (MDA) revealed a marked increase in the staining of modified proteins in the ethanol-treated mice. Increased protein carbonyl content was confirmed utilizing subcellular fractionation of liver homogenates followed by biotin-tagging through hydrazide chemistry, where approximately a 2-fold increase in modified proteins was observed in microsomal and cytosolic fractions. To determine targets of protein carbonylation, a secondary hydrazide method coupled to a highly sensitive 2-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS or MuDPIT) technique was utilized. Our results have identified 414 protein targets for modification by reactive aldehydes in ALD. The presence of novel <i>in vivo</i> sites of protein modification by 4-HNE (2), 4-ONE (4) and ACR (2) was also confirmed in our data set. While the precise impact of protein carbonylation in ALD remains unknown, a bioinformatic analysis of the data set has revealed key pathways associated with disease progression, including fatty acid metabolism, drug metabolism, oxidative phosphorylation, and the TCA cycle. These data suggest a major role for aldehyde adduction in the pathogenesis of ALD

    Protein Carbonylation in a Murine Model for Early Alcoholic Liver Disease

    No full text
    Hepatic oxidative stress and subsequent lipid peroxidation are well-recognized consequences of sustained ethanol consumption. The covalent adduction of nucleophilic amino acid side-chains by lipid electrophiles is significantly increased in patients with alcoholic liver disease (ALD); a global assessment of <i>in vivo</i> protein targets and the consequences of these modifications, however, has not been conducted. In this article, we describe the identification of novel protein targets for covalent adduction in a 6-week murine model for ALD. Ethanol-fed mice displayed a 2-fold increase in hepatic TBARS, while immunohistochemical analysis for the reactive aldehydes 4-hydroxynonenal (4-HNE), 4-oxononenal (4-ONE), acrolein (ACR), and malondialdehyde (MDA) revealed a marked increase in the staining of modified proteins in the ethanol-treated mice. Increased protein carbonyl content was confirmed utilizing subcellular fractionation of liver homogenates followed by biotin-tagging through hydrazide chemistry, where approximately a 2-fold increase in modified proteins was observed in microsomal and cytosolic fractions. To determine targets of protein carbonylation, a secondary hydrazide method coupled to a highly sensitive 2-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS or MuDPIT) technique was utilized. Our results have identified 414 protein targets for modification by reactive aldehydes in ALD. The presence of novel <i>in vivo</i> sites of protein modification by 4-HNE (2), 4-ONE (4) and ACR (2) was also confirmed in our data set. While the precise impact of protein carbonylation in ALD remains unknown, a bioinformatic analysis of the data set has revealed key pathways associated with disease progression, including fatty acid metabolism, drug metabolism, oxidative phosphorylation, and the TCA cycle. These data suggest a major role for aldehyde adduction in the pathogenesis of ALD

    Equilibrium binding data utilizing the fluorescent probe ANS.

    No full text
    <p>Values presented are mean ± SEM of two independent experiments consisting of at least 3 replicates. AFU denotes arbitrary fluorescent units.</p
    • …
    corecore