88 research outputs found

    Randomised controlled trials in plastic surgery: a systematic review of reporting quality

    Get PDF
    Background: We recently conducted a systematic review of the methodological quality of randomised controlled trials (RCTs) in plastic surgery. In accordance with convention, we are here separately reporting a systematic review of the reporting quality of the same RCTs. Methods: MEDLINE® and the Cochrane Database of Systematic Reviews were searched by an information specialist from 1 January 2009 to 30 June 2011 for the MESH heading ‘Surgery, Plastic’. Limitations were entered for English language, human studies and randomised controlled trials. Manual searching for RCTs involving surgical techniques was performed within the results. Scoring of the eligible papers was performed against the 23-item CONSORT Statement checklist. Independent secondary scoring was then performed and discrepancies resolved through consensus. Results: Fifty-seven papers met the inclusion criteria. The median CONSORT score was 11.5 out of 23 items (range 5.3–21.0). Items where compliance was poorest included intervention/comparator details (7 %), randomisation implementation (11 %) and blinding (26 %). Journal 2010 impact factor or number of authors did not significantly correlate with CONSORT score (Spearman rho = 0.25 and 0.12, respectively). Only 61 % declared conflicts of interest, 75 % permission from an ethics review committee, 47 % declared sources of funding and 16 % stated a trial registry number. There was no correlation between the volume of RCTs performed in a particular country and reporting quality. Conclusions: The reporting quality of RCTs in plastic surgery needs improvement. Better education, awareness amongst all stakeholders and hard-wiring compliance through electronic journal submission systems could be the way forward. We call for the international plastic surgical community to work together on these long-standing problems

    Preferred reporting of case series in surgery; the PROCESS guidelines

    Get PDF
    Introduction Case series have been a long held tradition within the surgical literature and are still frequently published. Reporting guidelines can improve transparency and reporting quality. No guideline exists for reporting case series, and our recent systematic review highlights the fact that key data are being missed from such reports. Our objective was to develop reporting guidelines for surgical case series. Methods A Delphi consensus exercise was conducted to determine items to include in the reporting guideline. Items included those identified from a previous systematic review on case series and those included in the SCARE Guidelines for case reports. The Delphi questionnaire was administered via Google Forms and conducted using standard Delphi methodology. Surgeons and others with expertise in the reporting of case series were invited to participate. In round one, participants voted to define case series and also what elements should be included in them. In round two, participants voted on what items to include in the PROCESS guideline using a nine-point Likert scale to assess agreement as proposed by the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) working group. Results In round one, there was a 49% (29/59) response rate. Following adjustment of the guideline with incorporation of recommended changes, round two commenced and there was an 81% (48/59) response rate. All but one of the items were approved by the participants and Likert scores 7-9 were awarded by >70% of respondents. The final guideline consists of an eight item checklist. Conclusion We present the PROCESS Guideline, consisting of an eight item checklist that will improve the reporting quality of surgical case series. We encourage authors, reviewers, editors, journals, publishers and the wider surgical and scholarly community to adopt these. </p

    Use of the parabiotic model in studies of cutaneous wound healing to define the participation of circulating cells

    Get PDF
    Previous experimental studies to assess the contribution of blood-borne circulating (BBC) cells to cutaneous wound healing have relied on discontinuous pulsing of labeled BBC elements or bone marrow transplant protocols. Such approaches do not allow the examination of stable BBC cells that have matured in a physiologically normal host. We have used a parabiotic murine model for cutaneous wound healing to evaluate the relative contribution of stable populations of peripheral blood cells expressing the green fluorescent protein (GFP) transgene in otherwise normal animals. Circulating cells (mature and immature) expressing the GFP transgene were easily detected and quantified in wounds of GFP− parabiotic twins during all evaluated stages of the healing response. Using multiple antibody probes, the relative contribution of various subsets of BBC cells could be comparatively assessed. In early wounds, some cells expressing mesenchymal epitopes were documented to be of hematopoietic origin, indicating the utility of this model in assessing cell plasticity in the context of tissue regeneration and repair. Application of this approach enables further investigation into the contribution of peripheral blood in normal and abnormal healing responses.National Institutes of Health (U.S.) (NIH 5 T32 HL007627- 22 Physician-Scientist Training Grant)National Institutes of Health (U.S.) (NIH/NIDDK (5 P30 DK36836-20))Brigham and Women’s Hospital (Program in Dermatopathology core grant (SDRC))National Institutes of Health. (U.S.). Department of Health and Human Services (Brigham and Women’s Hospital’s Program in Dermatopathology core grant (SPORE)

    Hyperspectral Imaging as an Early Biomarker for Radiation Exposure and Microcirculatory Damage

    Get PDF
    BACKGROUND: Radiation exposure can lead to detrimental effects in skin microcirculation. The precise relationship between radiation dose received and its effect on cutaneous perfusion still remains controversial. Previously, we have shown that hyperspectral imaging (HSI) is able to demonstrate long-term reductions in cutaneous perfusion secondary to chronic microvascular injury. This study characterizes the changes in skin microcirculation in response to varying doses of ionizing radiation and investigates these microcirculatory changes as a possible early non-invasive biomarker that may correlate with the extent of long-term microvascular damage.METHODS: Immunocompetent hairless mice (n=66) were exposed to single fractions of superficial beta-irradiation in doses of 0, 5, 10, 20, 35, or 50 Gy. A HSI device was utilized to measure deoxygenated hemoglobin levels in irradiated and control areas. HSI measurements were performed at baseline before radiation exposure and for the first three days post-irradiation. Maximum macroscopic skin reactions were graded, and histological assessment of cutaneous microvascular densities at four weeks post-irradiation was performed in harvested tissue by CD31 immunohistochemistry.RESULTS: CD31 immunohistochemistry demonstrated a significant correlation (r=0.90, p<0.0001) between dose and vessel density reduction at four weeks. Using HSI analysis, early changes in deoxygenated hemoglobin levels were observed during the first three days post-irradiation in all groups. These deoxygenated hemoglobin changes varied proportionally with dose (r=0.98, p<0.0001) and skin reactions (r=0.98, p<0.0001). There was a highly significant correlation (r= 0.91, p<0.0001) between these early changes in deoxygenated hemoglobin and late vascular injury severity assessed at the end of four weeks.CONCLUSIONS: Radiation dose is directly correlated with cutaneous microvascular injury severity at four weeks in our model. Early post-exposure measurement of cutaneous deoxygenated hemoglobin levels may be a useful biomarker for radiation dose reconstruction and predictor for chronic microvascular injury

    Continuous NPWT regulates fibrosis in murine diabetic wound healing

    Get PDF
    Scarring is associated with significant morbidity. The mechanical signaling factor yes-associated protein (YAP) has been linked to Engrailed-1 (En1)-lineage positive fibroblasts (EPFs), a pro-scarring fibroblast lineage, establishing a connection between mechanotransduction and fibrosis. In this study, we investigate the impact of micromechanical forces exerted through negative pressure wound therapy (NPWT) on the pathophysiology of fibrosis. Full-thickness excisional dorsal skin wounds were created on diabetic (db/db) mice which were treated with occlusive covering (control) or NPWT (continuous, -125 mmHg, 7 days; NPWT). Analysis was performed on tissue harvested 10 days after wounding. NPWT was associated with increased YAP

    In vivo safety profile and biodistribution of GMP-manufactured human skin-derived ABCB5-positive mesenchymal stromal cells for use in clinical trials

    Get PDF
    Background aims Human dermal ABCB5-expressing mesenchymal stromal cells (ABCB5+ MSCs) represent a promising candidate for stem cell–based therapy of various currently uncurable diseases in several fields of regenerative medicine. We have developed and validated a method to isolate, from human skin samples, and expand ABCB5+ MSCs that meet the guideline criteria of the International Society for Cellular Therapy. We are able to process these cells into a Good Manufacturing Practice–conforming, MSC-based advanced-therapy medicinal product. Methods To support the development of ABCB5+ MSCs for potential therapeutic topical, intramuscular and intravenous administration, we have tested our product in a series of Good Laboratory Practice–compliant nonclinical in-vivo studies addressing all relevant aspects of biosafety, including potential long-term persistence and proliferation, distribution to nontarget tissues, differentiation into undesired cell types, ectopic tissue formation, tumor formation and local tissue reaction. Results (i) Subcutaneous application of 1 × 107 ABCB5+ MSCs/animal and intravenous application of 2 × 106 ABCB5+ MSCs/animal, respectively, to immunocompromised mice did not result in safety-relevant biodistribution, persistence or proliferation of the cells; (ii) three monthly subcutaneous injections of ABCB5+ MSCs at doses ranging from 1 × 105 to 1 × 107 cells/animal and three biweekly intravenous injections of 2 × 106 ABCB5+ MSCs/animal, respectively, to immunocompromised mice were nontoxic and revealed no tumorigenic potential; and (iii) intramuscular injection of 5 × 106 ABCB5+ MSCs/animal to immunocompromised mice was locally well tolerated. Discussion The present preclinical in vivo data demonstrate the local and systemic safety and tolerability of a novel advanced-therapy medicinal product based on human skin-derived ABCB5+ MSCs

    Association of age with perioperative morbidity among patients undergoing surgical management of minor burns

    Get PDF
    Introduction: Burn injuries are associated with significant morbidity, often necessitating surgical management. Older patients are more prone to burns and more vulnerable to complications following major burns. While the relationship between senescence and major burns has already been thoroughly investigated, the role of age in minor burns remains unclear. To better understand differences between elderly and younger patients with predominantly minor burns, we analyzed a multi-institutional database. Methods: We reviewed the 2008-2020 ACS-NSQIP database to identify patients who had suffered burns according to ICD coding and underwent initial burn surgery. Results: We found 460 patients, of which 283 (62%) were male and 177 (38%) were female. The mean age of the study cohort was 46 ± 17 years, with nearly one-fourth (n = 108; 23%) of all patients being aged ≥60 years. While the majority (n = 293; 64%) suffered from third-degree burns, 22% (n = 99) and 15% (n = 68) were diagnosed with second-degree burns and unspecified burns, respectively. An average operation time of 46 min, a low mortality rate of 0.2% (n = 1), a short mean length of hospital stay (1 day), and an equal distribution of in- and outpatient care (51%, n = 234 and 49%, n = 226, respectively) indicated that the vast majority of patients suffered from minor burns. Patients aged ≥60 years showed a significantly prolonged length of hospital stay (p0.0001), creatinine (p>0.0001), white blood cell count (p=0.02), partial thromboplastin time (p = 0.004), and lower levels of albumin (p = 0.0009) and hematocrit (p>0.0001) were identified as risk factors for the occurrence of any complication. Further, complications were more frequent among patients with lower body burns. Discussion: In conclusion, patients ≥60 years undergoing surgery for predominantly minor burns experienced significantly more complications. Minor lower body burns correlated with worse outcomes and a higher incidence of adverse events. Decreased levels of serum albumin and hematocrit and elevated values of blood urea nitrogen, creatinine, white blood count, and partial thromboplastin time were identified as predictive risk factors for complications

    Ex vivo-expanded highly pure ABCB5+ mesenchymal stromal cells as good manufacturing practice-compliant autologous advanced therapy medicinal product for clinical use: Process validation and first in-human data

    Get PDF
    © 2020 International Society for Cell & Gene Therapy Background aim: Mesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury. However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation. Methods: The authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to generate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal product (ATMP). This product has been approved by the German competent regulatory authority to be tested in a clinical trial to treat therapy-resistant chronic venous ulcers. Results: As of now, 12 wounds in nine patients have been treated with 5 × 105 autologous ABCB5+ MSCs per cm2 wound area, eliciting a median wound size reduction of 63% (range, 32–100%) at 12 weeks and early relief of pain. Conclusions: The authors describe here their GMP- and European Pharmacopoeia-compliant production and quality control process, report on a pre-clinical dose selection study and present the first in-human results. Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clinically relevant wound closure strategy for patients with chronic therapy-resistant wounds
    corecore