287 research outputs found
Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution
A birth-death process is a continuous-time Markov chain that counts the
number of particles in a system over time. In the general process with
current particles, a new particle is born with instantaneous rate
and a particle dies with instantaneous rate . Currently no robust and
efficient method exists to evaluate the finite-time transition probabilities in
a general birth-death process with arbitrary birth and death rates. In this
paper, we first revisit the theory of continued fractions to obtain expressions
for the Laplace transforms of these transition probabilities and make explicit
an important derivation connecting transition probabilities and continued
fractions. We then develop an efficient algorithm for computing these
probabilities that analyzes the error associated with approximations in the
method. We demonstrate that this error-controlled method agrees with known
solutions and outperforms previous approaches to computing these probabilities.
Finally, we apply our novel method to several important problems in ecology,
evolution, and genetics
A Seriation Approach for Visualization-Driven Discovery of Co-Expression Patterns in Serial Analysis of Gene Expression (SAGE) Data
Background: Serial Analysis of Gene Expression (SAGE) is a DNA sequencing-based method for large-scale gene expression profiling that provides an alternative to microarray analysis. Most analyses of SAGE data aimed at identifying co-expressed genes have been accomplished using various versions of clustering approaches that often result in a number of false positives. Principal Findings: Here we explore the use of seriation, a statistical approach for ordering sets of objects based on their similarity, for large-scale expression pattern discovery in SAGE data. For this specific task we implement a seriation heuristic we term ‘progressive construction of contigs ’ that constructs local chains of related elements by sequentially rearranging margins of the correlation matrix. We apply the heuristic to the analysis of simulated and experimental SAGE data and compare our results to those obtained with a clustering algorithm developed specifically for SAGE data. We show using simulations that the performance of seriation compares favorably to that of the clustering algorithm on noisy SAGE data. Conclusions: We explore the use of a seriation approach for visualization-based pattern discovery in SAGE data. Using both simulations and experimental data, we demonstrate that seriation is able to identify groups of co-expressed genes more accurately than a clustering algorithm developed specifically for SAGE data. Our results suggest that seriation is a usefu
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Determinants of quality of life in children with psychiatric disorders
Objective: To assess factors that, in addition to childhood psychopathology, are associated with Quality of Life (QoL) in children with psychiatric problems. Methods: In a referred sample of 252 8 to 18-year-olds, information concerning QoL, psychopathology and a broad range of child, parent, and family/ social network factors was obtained from children, parents, teachers and clinicians. Results: Poor child, parent, and clinician reported QoL was associated with child psychopathology, but given the presence of psychopathology, also with child factors, such as low self-esteem, and poor social skills, and family/social network factors, such as poor family functioning, and poor social support. In multiple linear regression analyses the importance of parent factors, such as parenting stress, was almost negligible. Conclusion: To increase QoL of children with psychiatric problems, treatment of symptoms is important, but outcome might improve if treatment is also focussed on other factors that may affect QoL. Results are discussed in relation to current treatment programs. © Springer 2005
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …