50 research outputs found

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.</p

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Novel insights into the molecular regulation of vascularization

    No full text

    Novel insights into the molecular regulation of vascularization

    No full text

    Beneficial effects of exercise training after myocardial infarction require full eNOS expression

    No full text
    Exercise training attenuates left ventricular (LV) dysfunction after myocardial infarction (MI). It could be speculated that these effects of exercise are mediated by increased endothelial NO synthase (eNOS) activity. In the present study we tested the hypothesis that eNOS plays a critical role in the exercise-induced amelioration of LV dysfunction after MI. MI or sham was induced in eNOS(-/-), eNOS(+/-) and eNOS(+/+) mice. After 8 weeks of voluntary wheel running (similar to 7 km/day in all groups) or sedentary housing, global cardiac function was determined in vivo and (immuno)histochemistry was performed to assess cardiomyocyte size, fibrosis, capillary density and apoptosis in remote myocardium. At baseline eNOS(-/-) mice had higher mean aortic pressure compared to eNOS(+/-) and eNOS(+/+) mice, but had normal global cardiac function. MI resulted in marked LV remodeling, including cardiomyocyte hypertrophy and a reduction in capillary density, increased fibrosis and apoptosis, as well as LV systolic and diastolic dysfunction to the same extent in all genotypes. In eNOS(+/+) MI mice exercise abolished fibrosis and apoptosis in the remote myocardium, attenuated LV systolic dysfunction and ameliorated pulmonary congestion. These beneficial effects were lost in eNOS(+/-) and eNOS(-/-) mice, while LV systolic dysfunction and pulmonary congestion in eNOS(+/-) mice were exacerbated by exercise. In conclusion, the beneficial effects of exercise after MI on LV remodeling and dysfunction depend critically on endogenous eNOS. The observation that the lack of one eNOS allele is sufficient to negate all beneficial effects of exercise, strongly suggests that exercise depends on full eNOS expression. (C) 2010 Elsevier Ltd. All rights reserved

    Activation of MMP8 and MMP13 by angiotensin II correlates to severe intra-plaque hemorrhages and collagen breakdown in atherosclerotic lesions with a vulnerable phenotype

    No full text
    Angiotensin II (ATII)-mediated hypertension increases the risk for acute coronary events, which may be caused by augmented collagen degradation. Interstitial fibers of collagen type I in the plaque can be degraded by MMP8 and MMP13 specifically. Indeed high MMP8 levels have been correlated with ruptured plaques in patients. To study the contribution of ATII in plaque rupture, we evaluated its effect on MMP8 and MMP13 activity on the vulnerable lesions using an extravascular device that induces regions of pro-atherogenic shear stress in the carotid arteries of ApoE KO mice. This triggers the growth of lesions with a "vulnerable" macrophage-rich phenotype (referred to as upstream lesions) and lesions with a "stable" fibrotic phenotype (referred to as downstream lesions). ATII administration increased mean blood pressure, and increased the incidence of intra-plaque hemorrhages (IPH) from 30% to 73% of the animals in the Upstream segments. The area of IPH was also increased by 5-fold. No IPHs were observed in the downstream lesions of the control group or the ATII group. In addition, ATII treatment doubled the size of upstream and downstream lesions. Upstream lesions in the ATII group were decreased in collagen content by 3-fold, contained 2-fold higher MMP8 and MMP13 levels, with a 2- and 3-fold increase in collagen type I degradation by MMP8 and MMP13 respectively compared to the upstream lesions in the control group. Gene expression analysis showed general increase in procollagens and TIMPs expression in response to ATII. However, ATII also decreased procollagen 5 alpha 3 expression in downstream lesions and decreased TIMP4 expression in upstream lesions. These data show that ATII promotes a "stable" fibrotic phenotype by inducing severe intra-plaque hemorrhages, characterized by increased degradation of interstitial collagen I via an MIMP-mediated (MMP8 and MMP13) mechanism. (C) 2009 Elsevier Ireland Ltd. All rights reserved

    Apelin Enhances Cardiac Neovascularization After Myocardial Infarction by Recruiting Aplnr plus Circulating Cells

    No full text
    Rationale: Neovascularization stimulated by local or recruited stem cells after ischemia is a key process that salvages damaged tissue and shows similarities with embryonic vascularization. Apelin receptor (Aplnr) and its endogenous ligand apelin play an important role in cardiovascular development. However, the role of apelin signaling in stem cell recruitment after ischemia is unknown. Objective: To investigate the role of apelin signaling in recruitment after ischemia. Methods and Results: Aplnr was specifically expressed in circulating cKit+/Flk1+ cells but not in circulating Sca1+/Flk1+ and Lin+ cells. cKit+/Flk1+/Aplnr+ cells increased significantly early after myocardial ischemia but not after hind limb ischemia, indicative of an important role for apelin/Aplnr in cell recruitment during the nascent biological repair response after myocardial damage. In line with this finding, apelin expression was upregulated in the infarcted myocardium. Injection of apel Conclusions: We conclude that apelin functions as a new and potent chemoattractant for circulating cKit+/Flk1+/Aplnr+ cells during early myocardial repair, providing myocardial protection against ischemic damage by improving neovascularization via paracine action. (Circ Res. 2012;111:585-598.

    Effect of shear stress alteration on atherosclerotic plaque vulnerability in cholesterol-fed rabbits

    No full text
    Previously, we created an experimental murine model for the induction of vulnerable plaque (VP). Although this murine model offers the opportunity to study the different molecular biological pathways that regulate plaque destabilization, the size of the animals severely limits the use of the model for in vivo diagnostics and percutaneous interventions. This study aimed to create a VP model in the rabbit, based on the murine model, to aid the assessment and development of novel diagnostic and interventional tools. New Zealand white rabbits were fed on a 2% cholesterol diet. After 1 week, a shear stress-altering device was implanted around the right carotid artery. Twelve weeks after cast placement, the carotid artery was isolated and processed for (immuno-)histological analysis to evaluate the presence of a VP phenotype. Atherosclerotic plaques with high lipid and macrophage content, low vascular smooth muscle cell content and intimal neovascularization were located upstream and downstream of the cast. The plaques lacked a significant necrotic core. In conclusion, we were able to create atherosclerotic plaques with a phenotype beyond that of a fatty streak, with a high percentage of lipids and macrophages, a thick cap with some vascular smooth muscle cells and neovascularization. However, as there was only a small necrotic core, the overall phenotype seems less vulnerable as compared to the thin fibrous cap atheroma in patients. </jats:p

    Inflammatory cytokine oncostatin M induces endothelial activation in macro- and microvascular endothelial cells and in APOE*3Leiden.CETP mice.

    No full text
    AIMS:Endothelial activation is involved in many chronic inflammatory diseases, such as atherosclerosis, and is often initiated by cytokines. Oncostatin M (OSM) is a relatively unknown cytokine that has been suggested to play a role in both endothelial activation and atherosclerosis. We comprehensively investigated the effect of OSM on endothelial cell activation from different vascular beds and in APOE*3Leiden.CETP mice. METHODS AND RESULTS:Human umbilical vein endothelial cells, human aortic endothelial cells and human microvascular endothelial cells cultured in the presence of OSM express elevated MCP-1, IL-6 and ICAM-1 mRNA levels. Human umbilical vein endothelial cells and human aortic endothelial cells additionally expressed increased VCAM-1 and E-selectin mRNA levels. Moreover, ICAM-1 membrane expression is increased as well as MCP-1, IL-6 and E-selectin protein release. A marked increase was observed in STAT1 and STAT3 phosphorylation indicating that the JAK/STAT pathway is involved in OSM signaling. OSM signals through the LIF receptor alfa (LIFR) and the OSM receptor (OSMR). siRNA knockdown of the LIFR and the OSMR revealed that simultaneous knockdown is necessary to significantly reduce MCP-1 and IL-6 secretion, VCAM-1 and E-selectin shedding and STAT1 and STAT3 phosphorylation after OSM stimulation. Moreover, OSM administration to APOE*3Leiden.CETP mice enhances plasma E-selectin levels and increases ICAM-1 expression and monocyte adhesion in the aortic root area. Furthermore, Il-6 mRNA expression was elevated in the aorta of OSM treated mice. CONCLUSION:OSM induces endothelial activation in vitro in endothelial cells from different vascular beds through activation of the JAK/STAT cascade and in vivo in APOE*3Leiden.CETP mice. Since endothelial activation is an initial step in atherosclerosis development, OSM may play a role in the initiation of atherosclerotic lesion formation
    corecore