43 research outputs found

    Inadequacy of zero-width approximation for a light Higgs boson signal

    Get PDF
    In the Higgs search at the LHC, a light Higgs boson (115 GeV <~ M_H <~ 130 GeV) is not excluded by experimental data. In this mass range, the width of the Standard Model Higgs boson is more than four orders of magnitude smaller than its mass. The zero-width approximation is hence expected to be an excellent approximation. We show that this is not always the case. The inclusion of off-shell contributions is essential to obtain an accurate Higgs signal normalisation at the 1% precision level. For gg (-> H) -> VV, V= W,Z, O(10%) corrections occur due to an enhanced Higgs signal in the region M_VV > 2 M_V, where also sizable Higgs-continuum interference occurs. We discuss how experimental selection cuts can be used to exclude this region in search channels where the Higgs invariant mass cannot be reconstructed. We note that the H -> VV decay modes in weak boson fusion are similarly affected.Comment: 26 pages, 18 figures, 6 tables; added references, expanded introduction, version to appear in JHE

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Status and Performance of the Underground Muon Detector of the Pierre Auger Observatory

    Get PDF

    The Fitting Procedure for Longitudinal Shower Profiles Observed with the Fluorescence Detector of the Pierre Auger Observatory

    Get PDF

    Investigating the UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory

    Get PDF
    Cosmogenic neutrinos are expected to originate in the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs), as a result of their interactions with background photons. Due to these reactions, the visible Universe in UHECRs is more limited than in neutrinos, which instead could reach us without interacting after traveling cosmological distances. In this contribution, we exploit a multimessenger approach by computing the expected energy spectrum and mass composition of UHECRs at Earth corresponding to combinations of spectral parameters and mass composition at their sources, as well as parameters related to the UHECR source distribution, and by determining, at the same time, the associated cosmogenic neutrino fluxes. By comparing the expected UHECR observables to the energy spectrum and mass composition measured at the Pierre Auger Observatory above 1017.8 eV and the expected neutrino fluxes to the most updated neutrino limits, we show the dependence of the neutrino fluxes on the characteristics of the the properties of the potential sources of UHECRs, such as their cosmological evolution and maximum redshift. In addition, the fraction of protons compatible with the data is also investigated in terms of expected neutrino fluxes

    Search for primary photons at tens of PeV with the Pierre Auger Observatory

    Get PDF

    The dynamic range of the upgraded surface-detector stations of AugerPrime

    Get PDF
    The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface-detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented

    Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

    Get PDF

    The Time Evolution of the Surface Detector of the Pierre Auger Observatory

    Get PDF

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data
    corecore