1,178 research outputs found

    Implications of outer-zone radiations on operations in the geostationary region utilizing the AE4 environmental model

    Get PDF
    The radiation exposure in the region of geostationary orbits is examined in search for means of optimizing human performance. It is found that the use of slightly inclined circular orbits is one means by which exposure and spacesuit thickness requirements can be reduced. Another effective technique is to limit the extravehicular activity to those days when the short term fluctuations result in low exposure. Space-suit shielding approaching 1/2 sq cm or less may be possible by utilizing work stoppages and inclined orbits. If aluminum and other low-atomic-number materials are used to construct the habitat, then excessive wall thicknesses are required. If special bremsstrahlung shielding is used, then the habitat shield may be reduced to as low as 2 g/sq cm. Numerous tables and graphs are presented for future analysis of dose in the geostationary region

    Plotit-method of interactively plotting input data for the vorlax computer program

    Get PDF
    Geometric input plotting to the VORLAX computer program by means of an interactive remote terminal is reported. The software consists of a procedure file and two programs. The programs and procedure file are described and a sample execution is presented

    Preliminary analysis of the implications of natural radiations on geostationary operations

    Get PDF
    The natural radiations present at geostationary orbit are discussed. Low-level galactic cosmic rays are important for careers spending a year or more at geostationary altitude. Trapped radiation will on occasion require interruption of extravehicular activity (EVA). The spacesuit shield requirements are strongly affected by the number of interruptions allowed. EVA cannot proceed during a large solar event and maximum allowable doses are exceeded in a few hours unless a heavily shielded area is provided. A shelter of 10 g/sq cm with personal shielding for the eyes and testes would contain exposure to within the presently accepted exposure constraints. Since radiation levels can increase unexpectedly to serious levels, an onboard radiation monitoring system with rate and integration capabilities is required for both surface-dose and depth-dose monitoring

    Improved analysis of electron penetration and numerical procedures for space radiation shielding

    Get PDF
    Electron penetration calculational techniques are reviewed with regard to their suitability for shield analysis in future space operations. Methods based on the transmission factors of Mar are discussed and a correction term for low-energy electrons, which results in slightly conservative shield estimates, is derived. This modified Mar's method provides estimates of the dose for electrons that penetrate through shields of arbitrary elemental material with an atomic number greater than four. A complete computer algorithm is included

    A constitutive model for simple shear of dense frictional suspensions

    Full text link
    Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction ϕ\phi increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of ϕ\phi. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters (ϕ,σ~(\phi,\tilde{\sigma}, and μ)\mu), with σ~=σ/σ0\tilde{\sigma} = \sigma/\sigma_0 the dimensionless shear stress and μ\mu the coefficient of interparticle friction: the dimensional stress is σ\sigma, and σ0F0/a2\sigma_0 \propto F_0/ a^2, where F0F_0 is the magnitude of repulsive force at contact and aa is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{\bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or \textquotedblleft jamming\textquotedblright\ points at volume fraction ϕJ0=ϕrcp\phi_{\rm J}^0 = \phi_{\rm rcp} (random close packing) for the low-stress lubricated state, and at ϕJ(μ)<ϕJ0\phi_{\rm J} (\mu) < \phi_{\rm J}^0 for any nonzero μ\mu in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.Comment: 12 pages, 10 figure
    corecore