22 research outputs found

    Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    Get PDF
    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (Te) and its fluctuations (δTe). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%–15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (Trad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s–1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s–1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.EUROfusion Consortium 63305

    Observation of accelerated beam ion population during edge localized modes in the ASDEX Upgrade tokamak

    Get PDF
    The interaction between fast-ions and edge localized modes (ELMs) is investigated by means of fast-ion loss detector measurements. Fast-ion losses are increased during ELMs exhibiting a 3D filamentary-like behaviour. An accelerated beam ion population has been observed during ELMs in a tokamak for the first time. Tomographic inversion of the measured fast-ion losses reveal multiple velocity-space structures. Attending to the experimental observations, an acceleration mechanism is proposed based on a resonant interaction between the beam ions and parallel electric fields emerging during the ELM crash. The key experimental observations can be qualitatively reproduced by full-orbit following simulations of fast-ions in the presence of the ELM magnetic and electric perturbation fields. Our findings may shed light on the possible contribution of fast-ions to the ELM stability and the transient heat loads on plasma facing components.EUROfusion Consortium 633053Spanish Ministry of Economy and Competitiveness (Grant No. FIS2015-69362-P)H2020 Marie Sklodowska Curie programme (Grant No. 708257

    Mode analysis limitations of ECE-I & ECE measurements at the plasma edge

    Get PDF
    Interpretation of the Electron Cyclotron Emission (ECE) and ECE Imaging (ECE-I) measurements concerning the measurement position and the radiation temperature (Trad) at the plasma edge is associated with significant uncertainty. Various limitations such as low and high-density limits, relativistic and Doppler shift-broadening, mode overlap were identified in the past. Here, we analyse the influence of density profile variation onto the radiation temperature in H-mode plasmas at ASDEX Upgrade tokamak. We show that, in the region of steep gradients, the variation of the density profile leads to an outward-shift of the measurement position, towards lower Trad. The analysis is extended towards the study of the contribution of the ordinary mode (O-mode) emission to the measured Trad at the plasma edge. With this analysis, we show the qualitative agreement between experimental observations and modeling when taking into account the O-mode contribution to the ECE measurements. All of these effects are assessed via the Electron Cyclotron Radiation transport forward model that is now routinely used to model the response of the ECE-I and ECE systems in different plasma scenarios

    Mode analysis limitations of ECE-I & ECE measurements at the plasma edge

    Get PDF
    Interpretation of the Electron Cyclotron Emission (ECE) and ECE Imaging (ECE-I) measurements concerning the measurement position and the radiation temperature (Trad) at the plasma edge is associated with significant uncertainty. Various limitations such as low and high-density limits, relativistic and Doppler shift-broadening, mode overlap were identified in the past. Here, we analyse the influence of density profile variation onto the radiation temperature in H-mode plasmas at ASDEX Upgrade tokamak. We show that, in the region of steep gradients, the variation of the density profile leads to an outward-shift of the measurement position, towards lower Trad. The analysis is extended towards the study of the contribution of the ordinary mode (O-mode) emission to the measured Trad at the plasma edge. With this analysis, we show the qualitative agreement between experimental observations and modeling when taking into account the O-mode contribution to the ECE measurements. All of these effects are assessed via the Electron Cyclotron Radiation transport forward model that is now routinely used to model the response of the ECE-I and ECE systems in different plasma scenarios

    Radiation transport modelling for the interpretation of oblique ECE measurements

    No full text
    The electron cyclotron emission (ECE) diagnostic provides routinely electron temperature (Te) measurements. At ASDEX Upgrade an electron cyclotron forward model, solving the radiation transport equation for given Te and electron density profile, is used in the framework of integrated data analysis. With this method Te profiles can be obtained from ECE measurements even for plasmas with low optical depth. However, due to the assumption of straight lines of sight and an absorption coefficient in the quasi-perpendicular approximation this forward model is not suitable for the interpretation of measurements by ECE diagnostics with an oblique line of sight. Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates

    Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    No full text
    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e) and its fluctuations (δT e). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed

    Momentum-space-resolved measurements using oblique electron cyclotron emission for the validation of the quasi-linear theory of electron cyclotron current drive

    No full text
    Electron cyclotron resonance heating (ECRH) can drive large current densities through electron cyclotron current drive (ECCD). ECCD is expected to be crucial for high-performance plasmas in future fusion reactors like ITER and DEMO, making the current drive efficiency of ECCD a critical design parameter for future reactors. In present-day devices, good agreement between measured and predicted current drive efficiency has been found. However, to ensure the reliability in future machines, a direct validation of the electron momentum distribution function is needed. As a first step towards this goal, we present in this paper oblique ECE measurements of a low-density plasma in the ASDEX Upgrade tokamak. Two oblique ECE diagnostics are used to allow the simultaneous measurements of electrons streaming co- and counter-directionally with the plasma current. Predictions for the distribution function are computed with the bounce-averaged Fokker-Planck code RELAX (E. Westerhof et al., Rijnhuizen report,1992). To allow direct comparison with the measurements, synthetic radiation temperatures are computed with the code ECRad (S. Denk et al., Computer Physics Communications, p. 107175, 2020). Good agreement is found if radial transport occurring predominantly at low electron energies is included. We demonstrate that the oblique ECE diagnostics measure the electron distribution function directly at the ECRH deposition site in phase space. Furthermore, they are sensitive to the abundance of pitch-angle scattered electrons that reduce the ECCD efficiency. Limitations and uncertainties of the measurements and the modeling are discussed
    corecore