2 research outputs found
The many faces of pediatric urticaria
Urticaria is a common disease that can affect individuals of all age groups, with approximately one-quarter of the population experiencing it at least once in their lifetime. Lesions characterized by erythema and itchy hives can appear anywhere on the body. These can vary in size ranging from millimeters to centimeters, and typically clear within 24 h. About 40% of patients with urticaria have accompanying angioedema, which involves localized deep tissue swelling. Urticaria usually occurs spontaneously and is classified into acute and chronic forms, with the latter referring to a condition that lasts for more than 6 weeks. The prevalence of chronic urticaria in the general population ranges from 0.5% to 5%, and it can either be inducible or spontaneous. The most common form of pediatric urticaria is acute and is usually self-limiting. However, a broad differential diagnosis should be considered in children with urticaria, particularly if they also have accompanying systemic complaints. Differential diagnoses of pediatric urticaria include chronic spontaneous urticaria, chronic inducible urticaria, serum sickness-like reaction, urticarial vasculitis, and mast cell disorders. Conditions that can mimic urticaria, including but not limited to cryopyrinopathies, hyper IgD syndrome, Periodic Fever, Aphthous Stomatitis, Pharyngitis and Adenitis (PFAPA), Tumor Necrosis Factor Receptor Associated Periodic Syndrome (TRAPs), and Schnitzler syndrome should also be considered. The many faces of pediatric urticaria can be both easy and confusing. A pragmatic approach relies on clinical foresight and understanding the various forms of urticaria and their potential mimickers. This approach can pave the way for an accurate and optimized diagnostic approach in children with urticaria
Clinical, genetic characteristics and treatment outcomes of children and adolescents with osteogenesis imperfecta: a two-center experience
Background: Osteogenesis imperfecta (OI), is a heritable, heterogeneous connective tissue disorder, characterized by fragile bones. There are conflicting results about genotype-phenotype correlations and efficiency of bisphosphonate treatment in this disorder. Aim: We aimed to evaluate the clinical, genetic characteristics, and long-term follow-up results of children and adolescents with OI. Materials and methods: A two-center retrospective study was conducted using demographic, clinical, and genetic data obtained from the medical records of the patients. Results: Twenty-nine patients (62% male, median age; 3.6 years) with OI diagnosis from 26 families were included in the study. Thirteen different variants (nine were novel) were described in 16 patients in COL1A1, COL1A2, and P3H1 genes. Our siblings with homozygous P3H1 variants had a severe phenotype with intrauterine and neonatal fractures. Twenty-two patients were treated with bisphosphonates (17 of them with pamidronate, five with alendronate) with a median duration of 3.0 (1.6-4.8) years. Eleven patients (50%) suffered from fractures after the treatment. Haploinsufficiency variants in COL1A1 caused a milder skeletal phenotype with less fracture count and better treatment outcomes than structural variants. When compared with the anthropometric measurements at the initial diagnosis time, height Z-scores were lower on the last clinical follow-up (p = 0.009). Conclusions: We could not find an obvious genotype-phenotype correlation in Turkish OI patients with COL1A1 or COL1A2 variants. Treatment with pamidronate was effective in reducing fracture counts, without any long-term adverse effects