6,557 research outputs found

    Dynamical heat channels

    Full text link
    We consider heat conduction in a 1D dynamical channel. The channel consists of a group of noninteracting particles, which move between two heat baths according to some dynamical process. We show that the essential thermodynamic properties of the heat channel can be evaluated from the diffusion properties of the underlying particles. Emphasis is put on the conduction under anomalous diffusion conditions. \\{\bf PACS number}: 05.40.+j, 05.45.ac, 05.60.cdComment: 4 figure

    Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes

    Full text link
    A collective Hamiltonian for the rotation-vibration motion of nuclei is considered, in which the axial quadrupole and octupole degrees of freedom are coupled through the centrifugal interaction. The potential of the system depends on the two deformation variables β2\beta_2 and β3\beta_3. The system is considered to oscillate between positive and negative β3\beta_3-values, by rounding an infinite potential core in the (β2,β3)(\beta_2,\beta_3)-plane with β2>0\beta_2>0. By assuming a coherent contribution of the quadrupole and octupole oscillation modes in the collective motion, the energy spectrum is derived in an explicit analytic form, providing specific parity shift effects. On this basis several possible ways in the evolution of quadrupole-octupole collectivity are outlined. A particular application of the model to the energy levels and electric transition probabilities in alternating parity spectra of the nuclei 150^{150}Nd, 152^{152}Sm, 154^{154}Gd and 156^{156}Dy is presented.Comment: 25 pages, 13 figures. Accepted in Phys. Rev.

    Magnetic relaxation in finite two-dimensional nanoparticle ensembles

    Full text link
    We study the slow phase of thermally activated magnetic relaxation in finite two-dimensional ensembles of dipolar interacting ferromagnetic nanoparticles whose easy axes of magnetization are perpendicular to the distribution plane. We develop a method to numerically simulate the magnetic relaxation for the case that the smallest heights of the potential barriers between the equilibrium directions of the nanoparticle magnetic moments are much larger than the thermal energy. Within this framework, we analyze in detail the role that the correlations of the nanoparticle magnetic moments and the finite size of the nanoparticle ensemble play in magnetic relaxation.Comment: 21 pages, 4 figure

    Machine-Related Backgrounds in the SiD Detector at ILC

    Full text link
    With a multi-stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam-halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub-detectors. Results of modeling of such backgrounds in comparison to those from the e+ e- interactions are presented in this paper for the SiD detector.Comment: 29 pages, 34 figures, 7 table

    Anomalous diffusion for overdamped particles driven by cross-correlated white noise sources

    Get PDF
    We study the statistical properties of overdamped particles driven by two cross-correlated multiplicative Gaussian white noises in a time-dependent environment. Using the Langevin and Fokker-Planck approaches, we derive the exact probability distribution function for the particle positions, calculate its moments and find their corresponding long-time, asymptotic behaviors. The generally anomalous diffusive regimes of the particles are classified, and their dependence on the friction coefficient and the characteristics of the noises is analyzed in detail. The asymptotic predictions are confirmed by exact solutions for two examples.Comment: 15 page

    Big-Bang Nucleosynthesis and Hadronic Decay of Long-Lived Massive Particles

    Full text link
    We study the big-bang nucleosynthesis (BBN) with the long-lived exotic particle, called X. If the lifetime of X is longer than \sim 0.1 sec, its decay may cause non-thermal nuclear reactions during or after the BBN, altering the predictions of the standard BBN scenario. We pay particular attention to its hadronic decay modes and calculate the primordial abundances of the light elements. Using the result, we derive constraints on the primordial abundance of X. Compared to the previous studies, we have improved the following points in our analysis: The JETSET 7.4 Monte Carlo event generator is used to calculate the spectrum of hadrons produced by the decay of X; The evolution of the hadronic shower is studied taking account of the details of the energy-loss processes of the nuclei in the thermal bath; We have used the most recent observational constraints on the primordial abundances of the light elements; In order to estimate the uncertainties, we have performed the Monte Carlo simulation which includes the experimental errors of the cross sections and transfered energies. We will see that the non-thermal productions of D, He3, He4 and Li6 provide stringent upper bounds on the primordial abundance of late-decaying particle, in particular when the hadronic branching ratio of X is sizable. We apply our results to the gravitino problem, and obtain upper bound on the reheating temperature after inflation.Comment: 94 pages, 49 figures, to appear in Phys. Rev. D. This is a full length paper of the preprint astro-ph/040249

    Measurement of Mutual Coulomb Dissociation in sNN=130\sqrt{s_{NN}}=130 GeV Au+Au collisions at RHIC

    Get PDF
    We report on the first measurement of Mutual Coulomb Dissociation in heavy ion collisions. We employ forward calorimeters to measure neutron multiplicity at beam rapidity in peripheral collisions. The cross-section for simultaneous electromagnetic breakup of Au nuclei at sNN=130\sqrt{s_{NN}}=130 GeV is σMCD=3.67±0.25\sigma_{MCD}=3.67\pm 0.25 barns in good agreement with calculations.Comment: This paper has been submitted for publication in Phys. Rev. Let

    Fast Magnetosonic Waves Driven by Gravitational Waves

    Get PDF
    The propagation of a gravitational wave (GW) through a magnetized plasma is considered. In particular, we study the excitation of fast magnetosonic waves (MSW) by a gravitational wave, using the linearized general-relativistic hydromagnetic equations. We derive the dispersion relation for the plasma, treating the gravitational wave as a perturbation in a Minkowski background space-time. We show that the presence of gravitational waves will drive magnetosonic waves in the plasma and discuss the potential astrophysical implications.Comment: 12 pages, 2 figures, Astronomy and Astrophysics in pres

    Two-body Photodisintegration of 4^{4}He with Full Final State Interaction

    Full text link
    The cross sections of the processes 4^4He(γ,p\gamma,p)3^3H and 4^4He(γ,n\gamma,n)3^3He are calculated taking into account the full final state interaction via the Lorentz integral transform (LIT) method. This is the first consistent microscopic calculation beyond the three--body breakup threshold. The results are obtained with a semirealistic central NN potential including also the Coulomb force. The cross sections show a pronounced dipole peak at 27 MeV which lies within the rather broad experimental band. At higher energies, where experimental uncertainties are considerably smaller, one finds a good agreement between theory and experiment. The calculated sum of three-- and four--body photodisintegration cross sections is also listed and is in fair agreement with the data.Comment: 18 pages, 6 figure

    New limits on di-nucleons decay into invisible channels

    Full text link
    Data of the radiochemical experiment [E.L.Fireman, 1978] with 1.7 t of KC_2H_3O_2, accumulated deep underground during ~1 yr, were reanalyzed to set limits on di-nucleons (nn and np) decays into invisible channels (disappearance, decay into neutrinos, etc.). The obtained lifetime bounds tau_np > 2.1 10^25 yr and tau_nn > 4.2 10^25 yr (at 90% C.L.) are better (or competitive) than those established in the recent experiments.Comment: 3 pages, accepted in JETP Letter
    corecore