7,726 research outputs found
Space-time velocity correlation function for random walks
Space-time correlation functions constitute a useful instrument from the
research toolkit of continuous-media and many-body physics. We adopt here this
concept for single-particle random walks and demonstrate that the corresponding
space-time velocity auto-correlation functions reveal correlations which extend
in time much longer than estimated with the commonly employed temporal
correlation functions. A generic feature of considered random-walk processes is
an effect of velocity echo identified by the existence of time-dependent
regions where most of the walkers are moving in the direction opposite to their
initial motion. We discuss the relevance of the space-time velocity correlation
functions for the experimental studies of cold atom dynamics in an optical
potential and charge transport on micro- and nano-scales.Comment: Phys. Rev. Lett., in pres
L\'evy walks
Random walk is a fundamental concept with applications ranging from quantum
physics to econometrics. Remarkably, one specific model of random walks appears
to be ubiquitous across many fields as a tool to analyze transport phenomena in
which the dispersal process is faster than dictated by Brownian diffusion. The
L\'{e}vy walk model combines two key features, the ability to generate
anomalously fast diffusion and a finite velocity of a random walker. Recent
results in optics, Hamiltonian chaos, cold atom dynamics, bio-physics, and
behavioral science demonstrate that this particular type of random walks
provides significant insight into complex transport phenomena. This review
provides a self-consistent introduction to L\'{e}vy walks, surveys their
existing applications, including latest advances, and outlines further
perspectives.Comment: 50 page
Levy walks with velocity fluctuations
The standard Levy walk is performed by a particle that moves ballistically
between randomly occurring collisions, when the intercollision time is a random
variable governed by a power-law distribution. During instantaneous collision
events the particle randomly changes the direction of motion but maintains the
same constant speed. We generalize the standard model to incorporate velocity
fluctuations into the process. Two types of models are considered, namely, (i)
with a walker changing the direction and absolute value of its velocity during
collisions only, and (ii) with a walker whose velocity continuously fluctuates.
We present full analytic evaluation of both models and emphasize the importance
of initial conditions. We show that the type of the underlying Levy walk
process can be identified by looking at the ballistic regions of the diffusion
profiles. Our analytical results are corroborated by numerical simulations
Nuclear reactions in hot stellar matter and nuclear surface deformation
Cross-sections for capture reactions of charged particles in hot stellar
matter turn out be increased by the quadrupole surface oscillations, if the
corresponding phonon energies are of the order of the star temperature. The
increase is studied in a model that combines barrier distribution induced by
surface oscillations and tunneling. The capture of charged particles by nuclei
with well-deformed ground-state is enhanced in stellar matter. It is found that
the influence of quadrupole surface deformation on the nuclear reactions in
stars grows, when mass and proton numbers in colliding nuclei increase.Comment: 12 pages, 10 figure
- …