9 research outputs found

    Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes

    Get PDF
    We use a scanning nanometer-scale superconducting quantum interference device to map the stray magnetic field produced by individual ferromagnetic nanotubes (FNTs) as a function of applied magnetic field. The images are taken as each FNT is led through magnetic reversal and are compared with micromagnetic simulations, which correspond to specific magnetization configurations. In magnetic fields applied perpendicular to the FNT long axis, their magnetization appears to reverse through vortex states, that is, configurations with vortex end domains or in the case of a sufficiently short FNT with a single global vortex. Geometrical imperfections in the samples and the resulting distortion of idealized magnetization configurations influence the measured stray-field patterns

    Reduction in the Computational Complexity of Calculating Losses on Eddy Currents in a Hydrogen Fuel Cell Using the Finite Element Analysis

    No full text
    This paper considers the issues of the reduction in the computational complexity of the numerical problem and the requirements of the computer memory size when calculating the power of the eddy currents in a hydrogen fuel cell based on a proton exchange membrane. The study was performed on a model problem based on a geometric pattern of a hydrogen fuel cell of typical dimensions and characteristics operating at a nominal load in steady-state conditions. The power of the eddy currents was calculated using a numerical model based on a tetrahedral finite element mesh and a mathematical model of a quasi-stationary electromagnetic field in the classical formulation through the vector magnetic potential. The requirements for the minimum degree of the geometric model approximation by a finite element mesh to achieve mesh stability of the computational problem results were defined. The paper considers issues of finite element order selection, the method of ordering, and the solution of the systems of linear algebraic equations (SLAEs). It shows the techniques for determining the accuracy of the calculated SLAE solution obtained by the direct method, as well as the effectiveness of the low-rank approximation of the SLAE to reduce the computational complexity of the computational problem solution and reduce the requirements for the amount of computer memory needed, considering the reduced accuracy of the SLAE solutions

    Mathematical Modeling of an Electrotechnical Complex of a Power Unit Based on Hydrogen Fuel Cells for Unmanned Aerial Vehicles

    No full text
    The issues of mathematical and numerical simulation of an electrical complex of a power plant based on hydrogen fuel cells with a voltage step-down converter were considered. The work was aimed at developing a mathematical model that would provide for determining the most loaded operation mode of the complex components. The existing mathematical models do not consider the effect of such processes as the charge and discharge of the battery backup power supply on the power plant components. They often do not consider the nonlinearity of the fuel cell output voltage. This paper offers a mathematical model of an electrical complex based on the circuit analysis. The model combines a well-known physical model of a fuel cell based on a potential difference and a model of a step-down converter with a battery backup power supply developed by the authors. A method of configuring a fuel cell model based on the experimental current–voltage characteristic by the least-squares method has been proposed. The developed model provides for determining currents and voltages in all components of the power plant both in the nominal operating mode and in the mode of limiting the power consumed from the fuel cell when the battery backup power supply is being charged. The correctness of the calculated ratios and the mathematical model has been confirmed experimentally. Using the proposed model, a 1300 W power plant with a specific power of 529.3 W∙h/kg was developed and tested

    Coherent Dynamics of Nanowire Force Sensors

    No full text
    We describe the use of grown nanowires as scanning directional force sensors. Two orthogonal flexural modes are used to demonstrate vectorial sensing of electric and magnetic fields. Furthermore, we show that the modes can be strongly coupled by demonstrating Rabi oscillations. These results open the way to implement coherent control and frequency stabilization in nanomechanical force and mass sensors

    Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal

    Get PDF
    Artificial spin ices are a class of metamaterials consisting of magnetostatically coupled nanomagnets. Their interactions give rise to emergent behavior, which has the potential to be harnessed for the creation of functional materials. Consequently, the ability to map the stray field of such systems can be decisive for gaining an understanding of their properties. Here, we use a scanning nanometer-scale superconducting quantum interference device (SQUID) to image the magnetic stray field distribution of an artificial spin ice system exhibiting structural chirality as a function of applied magnetic fields at 4.2 K. The images reveal that the magnetostatic interaction gives rise to a measurable bending of the magnetization at the edges of the nanomagnets. Micromagnetic simulations predict that, owing to the structural chirality of the system, this edge bending is asymmetric in the presence of an external field and gives rise to a preferred direction for the reversal of the magnetization. This effect is not captured by models assuming a uniform magnetization. Our technique thus provides a promising means for understanding the collective response of artificial spin ices and their interactions
    corecore