70 research outputs found

    Time-Continuous Bell Measurements

    Full text link
    We combine the concept of Bell measurements, in which two systems are projected into a maximally entangled state, with the concept of continuous measurements, which concerns the evolution of a continuously monitored quantum system. For such time-continuous Bell measurements we derive the corresponding stochastic Schr\"odinger equations, as well as the unconditional feedback master equations. Our results apply to a wide range of physical systems, and are easily adapted to describe an arbitrary number of systems and measurements. Time-continuous Bell measurements therefore provide a versatile tool for the control of complex quantum systems and networks. As examples we show show that (i) two two-level systems can be deterministically entangled via homodyne detection, tolerating photon loss up to 50%, and (ii) a quantum state of light can be continuously teleported to a mechanical oscillator, which works under the same conditions as are required for optomechanical ground state cooling.Comment: 4+4 pages, 4 figure

    A quantum volume hologram

    Full text link
    We propose a new scheme for parallel spatially multimode quantum memory for light. The scheme is based on counter-propagating quantum signal wave and strong classical reference wave, like in a classical volume hologram, and therefore can be called a quantum volume hologram. The medium for the hologram consists of a spatially extended ensemble of atoms placed in a magnetic field. The write-in and read-out of this quantum hologram is as simple as that of its classical counterpart and consists of a single pass illumination. In addition we show that the present scheme for a quantum hologram is less sensitive to diffraction and therefore is capable of achieving higher density of storage of spatial modes as compared to previous proposals. A quantum hologram capable of storing entangled images can become an important ingredient in quantum information processing and quantum imaging.Comment: 8 pages, 2 figure

    Dissipative versus Conditional Generation of Gaussian Entanglement and Spin Squeezing

    Full text link
    Spin squeezing of collective atomic spins can be achieved conditionally via probing with light and subsequent homodyne detection, as is done in a Quantum Nondemolition measurement. Recently it has been shown that squeezing can also be created unconditionally by a properly designed dissipative dynamics. We compare the two approaches in a Gaussian description, and optimize over all Gaussian light-matter interactions. We find that in the optimal unconditional scheme based on dissipation the level of squeezing scales as d−1/2d^{-1/2}. In contrast, the optimal conditional scheme based on measurement of light -- which in fact is not a Quantum Nondemolition measurement -- can provide squeezing which scales as d−1d^{-1} in the most relevant regime of moderate optical depths. Our results apply directly also to the creation of entanglement in the form of non-local spin squeezing of two atomic ensembles.Comment: 9 pages, 7 figure

    Unconditional steady-state entanglement in macroscopic hybrid systems by coherent noise cancellation

    Get PDF
    The generation of entanglement between disparate physical objects is a key ingredient in the field of quantum technologies, since they can have different functionalities in a quantum network. Here we propose and analyze a generic approach to steady-state entanglement generation between two oscillators with different temperatures and decoherence properties coupled in cascade to a common unidirectional light field. The scheme is based on a combination of coherent noise cancellation and dynamical cooling techniques for two oscillators with effective masses of opposite signs, such as quasi-spin and motional degrees of freedom, respectively. The interference effect provided by the cascaded setup can be tuned to implement additional noise cancellation leading to improved entanglement even in the presence of a hot thermal environment. The unconditional entanglement generation is advantageous since it provides a ready-to-use quantum resource. Remarkably, by comparing to the conditional entanglement achievable in the dynamically stable regime, we find our unconditional scheme to deliver a virtually identical performance when operated optimally.Comment: Final version; 6 pages, 3 figures + Supplemental Materia

    Quantum memory for images - a quantum hologram

    Full text link
    Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. In this Letter we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multi-atom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multi-atom nature of the ensemble it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram has a higher storage capacity compared to a classical hologram, and is capable of storing quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve. Due to optical parallelism, the information capacity of the quantum hologram will obviously exceed that of a single-mode scheme.Comment: 5 pages, 3 figure

    Optimal and Variational Multi-Parameter Quantum Metrology and Vector Field Sensing

    Full text link
    We study multi-parameter sensing of 2D and 3D vector fields within the Bayesian framework for SU(2)SU(2) quantum interferometry. We establish a method to determine the optimal quantum sensor, which establishes the fundamental limit on the precision of simultaneously estimating multiple parameters with an NN-atom sensor. Keeping current experimental platforms in mind, we present sensors that have limited entanglement capabilities, and yet, significantly outperform sensors that operate without entanglement and approach the optimal quantum sensor in terms of performance. Furthermore, we show how these sensors can be implemented on current programmable quantum sensors with variational quantum circuits by minimizing a metrological cost function. The resulting circuits prepare tailored entangled states and perform measurements in an appropriate entangled basis to realize the best possible quantum sensor given the native entangling resources available on a given sensor platform. Notable examples include a 2D and 3D quantum ``compass'' and a 2D sensor that provides a scalable improvement over unentangled sensors. Our results on optimal and variational multi-parameter quantum metrology are useful for advancing precision measurements in fundamental science and ensuring the stability of quantum computers, which can be achieved through the incorporation of optimal quantum sensors in a quantum feedback loop.Comment: 20 pages, 8 figure
    • …
    corecore