4,738 research outputs found

    Towards revised physically based parameter estimation methods for the Pitman monthly rainfall-runoff model

    Get PDF
    This paper presents a preliminary stage in the development of an alternative parameterisation procedure for the Pitman monthly rainfall runoff model which enjoys popular use in water resource assessment in Southern Africa. The estimation procedures are based on the premise that it is possible to use physical basin properties directly in the quantification of the soil moisture accounting, runoff, and recharge and infiltration parameters. The results for selected basins show that the revised parameters are at least as good as current regionalised sets or give satisfactory results in areas where no regionalised parameters exist.Keywords: hydrological modelling, Southern Africa, parameters, regionalisation, uncertaint

    Ecological impacts of small dams on South African rivers Part 2: Biotic response – abundance and composition of macroinvertebrate communities

    Get PDF
    This paper investigates the cumulative impacts of small dams on invertebrate communities in 2 regions of South Africa – the Western Cape and Mpumalanga. Previous research found reduced discharge, increased total dissolved salts, and a decrease in average score per taxon (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigated using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catchment in foothill-gravel streams (in both Western Cape and Mpumalanga) and in foothill-cobble streams (in Western Cape only). Opportunistic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and seasons) and detailed (at species level) collection of data to verify the results of cumulative effects of small dams. This can further the development of a framework for small-dam construction and management that will limit their impact on river catchments. Keywords: cumulative impacts, reduced low flows, environmental water quality, Ephemeroptera, Trichopter

    Ecological impacts of small dams on South African rivers Part 1: Drivers of change – water quantity and quality

    Get PDF
    Impacts of large dams are well-known and quantifiable, while small dams have generally been perceived as benign, both socially and environmentally. The present study quantifies the cumulative impacts of small dams on the water quality (physico-chemistry and invertebrate biotic indices) and quantity (discharge) of downstream rivers in 2 South African regions. The information from 2 South African national databases was used for evaluating the cumulative impacts on water quality and quantity. Physico-chemistry and biological data were obtained from the River Health Programme, and discharge data at stream flow gauges was obtained from the Hydrological Information System. Multivariate analyses were conducted to establish broad patterns for cumulative impacts of small dams across the 2 regions – Western Cape (winter rainfall, temperate, south-western coast) and Mpumalanga (summer rainfall, tropical, eastern coast). Multivariate analyses found that the changes in macroinvertebrate indices and the stream’s physico-chemistry were more strongly correlated with the density of small dams in the catchment (as a measure of cumulative impact potential) relative to the storage capacity of large dams. T-tests on the data, not including samples with upstream large dams, indicated that the high density of small dams significantly reduced low flows and increased certain physico-chemistry variables (particularly total dissolved salts) in both the regions, along with associated significant reductions in a macroinvertebrate index (SASS4 average score per taxon). Regional differences were apparent in the results for discharge reductions and the macroinvertebrate index. The results suggest that the cumulative effect of a high number of small dams is impacting the quality and quantity of waters in South African rivers and that these impacts need to be systematically incorporated into the monitoring protocol of the environmental water requirements. Keywords: cumulative impacts, regional comparison, macroinvertebrate indices, measures of small-dam impact potential, average score per taxo

    Ecological impacts of small dams on South African rivers Part 2: Biotic response – abundance and composition of macroinvertebrate communities

    Get PDF
    This paper investigates the cumulative impacts of small dams on invertebrate communities in 2 regions of South Africa – the Western Cape and Mpumalanga. Previous research found reduced discharge, increased total dissolved salts, and a decrease in average score per taxon (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigated using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catchment in foothill-gravel streams (in both Western Cape and Mpumalanga) and in foothill-cobble streams (in Western Cape only). Opportunistic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and seasons) and detailed (at species level) collection of data to verify the results of cumulative effects of small dams. This can further the development of a framework for small-dam construction and management that will limit their impact on river catchments

    The Use of Prosthetic Stents in Tracheobronchial, Gastrointestinal, and Genitourinary Diseases

    Get PDF
    The concept of using a stent to maintain patency of a lumen is not new. As early as 1969, stents were being investigated in the peripheral arterial system as a means of preventing restenosis after dilatation by balloon angioplasty (Dotter, 1969). Since then, numerous reports have demonstrated the use of stents in both the peripheral and coronary artery systems (Maass et al., 1982; Dotter et al., 1983; Wright et al., 1985; Palmaz et al., 1987). Concomitant with the investigation of expandable endovascular metal prosthesis has been the development of prosthetic devices for management of tracheobronchial, gastrointestinal, and genitourinary diseases. We will review the use of endoscopically placed prosthetic devices in the management of diseases affecting these systems

    Understanding and modelling surface water-groundwater interactions

    Get PDF
    The main objective of the total project was to contribute to the incorpo-ration of uncertainty assessments in practical water resource decision making in South Africa. The companion report addresses more general issues of uncertainty and hydrological modelling, while this report con-centrates on the uncertainties in both understanding and modelling the interactions between surface water and groundwater. Since groundwa-ter routines were added into the widely used Pitman model in the early 2000s by both Prof Hughes and Mr Karim Sami, the approaches have come under a great deal of criticism mainly from the geohydrological community of specialists within South Africa. Arguably, a great deal of this criticism is based on misunderstandings of the intention of adding groundwater routines into an existing surface water model. It was stated quite clearly at the time that this approach was not seen as a replace-ment for existing detailed numerical approaches to groundwater model-ling. The intention was to create a scientific and practical tool that could be used to simulate the complete hydrological cycle at the catchment scale so that integrated water resources decision making could be better supported

    Implementing uncertainty analysis in water resources assessment and planning

    Get PDF
    The main objective of the project was to contribute to the incorporation of uncer-tainty assessments in practical water resource decision-making in South Africa. There are three main components to this objective. The first is the quantification of realistic levels of uncertainty that are as low as possible given the available infor-mation (reducing uncertainty). The second is the availability of tools to implement uncertainty analysis across the broad spectrum of data analysis and modelling plat-forms that form part of practical water resources assessment (including hydrologi-cal and water resources yield models). The third relates to the issue of using uncer-tain information in the process of making decisions about the design, development or operation of water resources systems. The latter includes social, political and economic uncertainties as well as the hydrological uncertainties that are directly addressed in this report. None of these are independent and all are associated with the fundamental issue that all of the role players should understand the key con-cepts of uncertainty and that virtually all of the information we use to make deci-sions is uncertain. One of the major challenges in this project as well as the previous WRC-supported project on uncertainty methods, was the lack of understanding of some of the key issues, or a lack of appreciation of the importance of uncertainty in all water resources decision-making

    Informing the Responses of Water Service Delivery Institutions to Climate and Development Changes: A Case Study in the Amatole Region, Eastern Cape

    Get PDF
    This report has been generated by the Water Research Commission (WRC) funded project Developing Climate Change Adaptation Measures and Decision-Support System for Selected South African Water Boards (Project No. K5/2018)

    Links between water temperatures, ecological responses and flow rates: a framework for establishing water temperature guidelines for the ecological reserve

    Get PDF
    Global ecosystems face unprecedented crises in habitat fragmentation, destruction and ultimately extinction (Groves, 2003), and of all the vary-ing ecological systems rivers are the most neglected and endangered (Groves, 2003; Driver, et al., 2005; Roux et al., 2005). The greatest threat to these systems is the loss or degradation of natural habitat and processes (Driver et al., 2005), and water temperatures, after flow vol-umes, are a primary abiotic driver of species patterns within river sys-tems. Stuckenberg (1969) highlighted the links between temperature, topography and faunal assemblages, while Rivers-Moore et al.(2004) highlights the major impacts of water temperatures on organisms, and illustrate how water temperatures are one of the primary environmental drivers structuring fish communities in the Sabie River, arguably the most icthyologically species-rich river in South Africa

    Ecological impacts of small dams on South African rivers Part 2: Biotic response–abundance and composition of macroinvertebrate communities

    Get PDF
    This paper investigates the cumulative impacts of small dams on inver-tebrate communities in 2 regions of South Africa–the Western Cape and Mpumalanga. Previous research found reduced discharge, in-creased total dissolved salts, and a decrease in average score per tax-on (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigat-ed using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catch-ment in foothill-gravel streams (in both Western Cape and Mpuma-langa) and in foothill-cobble streams (in Western Cape only). Opportun-istic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and sea-sons) and detailed (at species level) collection of data to verify the re-sults of cumulative effects of small dams. This can further the devel-opment of a framework for small-dam construction and management that will limit their impact on river catchments
    • …
    corecore