17 research outputs found

    Screening of an individualized treatment strategy for an advanced gallbladder cancer using patient-derived tumor xenograft and organoid models

    Get PDF
    Gallbladder cancer is a highly aggressive malignancy with poor sensitivity to postoperative radiotherapy or chemotherapy; therefore, the development of individualized treatment strategies is paramount to improve patient outcomes. Both patient-derived tumor xenograft (PDX) and patient-derived tumor organoid (PDO) models derived from surgical specimens can better preserve the biological characteristics and heterogeneity of individual original tumors, display a unique advantage for individualized therapy and predicting clinical outcomes. In this study, PDX and PDO models of advanced gallbladder cancer were established, and the consistency of biological characteristics between them and primary patient samples was confirmed using pathological analysis and RNA-sequencing. Additionally, we tested the efficacy of chemotherapeutic drugs, targeted drugs, and immune checkpoint inhibitors using these two models. The results demonstrated that gemcitabine combined with cisplatin induced significant therapeutic effects. Furthermore, treatment with immune checkpoint inhibitors elicited promising responses in both the humanized mice and PDO immune models. Based on these results, gemcitabine combined with cisplatin was used for basic treatment, and immune checkpoint inhibitors were applied as a complementary intervention for gallbladder cancer. The patient responded well to treatment and exhibited a clearance of tumor foci. Our findings indicate that the combined use of PDO and PDX models can guide the clinical treatment course for gallbladder cancer patients to achieve individualized and effective treatment

    Organosilicon Fluorescent Materials

    No full text
    In the past few decades, organosilicon fluorescent materials have attracted great attention in the field of fluorescent materials not only due to their abundant and flexible structures, but also because of their intriguing fluorescence properties, distinct from silicon-free fluorescent materials. Considering their unique properties, they have found broad application prospects in the fields of chemosensor, bioimaging, light-emitting diodes, etc. However, a comprehensive review focusing on this field, from the perspective of their catalogs and applications, is still absent. In this review, organosilicon fluorescent materials are classified into two main types, organosilicon small molecules and polymers. The former includes fluorescent aryl silanes and siloxanes, and the latter are mainly fluorescent polysiloxanes. Their synthesis and applications are summarized. In particular, the function of silicon atoms in fluorescent materials is introduced. Finally, the development trend of organosilicon fluorescent materials is prospected

    Facile Synthesis of Sulfur-Containing Functionalized Disiloxanes with Nonconventional Fluorescence by Thiol–Epoxy Click Reaction

    No full text
    Herein, a series of novel sulfur-containing functionalized disiloxanes based on a low-cost and commercially available material, i.e., 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane, and various thiol compounds were prepared by thiol–epoxy click reaction. It was found that both lithium hydroxide (LiOH) and tetrabutylammonium fluoride (TBAF) have high catalytic activity after optimizing the reaction condition, and the reaction can be carried out with high yields, excellent regioselectivity, mild reaction condition, and good tolerance of functional groups. These compounds exhibit excellent nonconventional fluorescence due to the formation of coordination bonds between Si atoms and heteroatoms (e.g., S or N) and can emit blue fluorescence upon ultraviolet (UV) irradiation. These results demonstrate that the thiol–epoxy click reaction could promisingly act as an efficient organosilicon synthetic methodology to construct various organosilicon materials with novel structures and functionality, and thus their application scope will be significantly expanded

    A New Hybrid Excitation Permanent Magnet Machine With an Independent AC Excitation Port

    No full text

    A Selenone-Functionalized Polyhedral Oligomeric Silsesquioxane for Selective Detection and Adsorption of Hg2+ ions in Aqueous Solutions

    No full text
    Developing novel functional polyhedral oligomeric silsesquioxane (POSS) for various applications is highly desirable. Herein we present the first example of a novel selenone-functionalized POSS (POSS-Se) by treating an imidazolium-containing POSS with selenium powder under mild condition. The structure of POSS-Se was characterized by FT-IR, 1H NMR, 13C NMR, 29Si NMR, and elemental analysis. Acid treatment of POSS-Se results in a hydrophilic red-orange colored solid, which is highly sensitive and selective for the detection of Hg2+ ions in aqueous solutions by visually observing the color change to pale yellow, and to white. Interestingly, POSS-Se has no activity on this detection. This finding is due to the Se–Se formation by acid-treatment and subsequent coordination-induced cleavage upon the addition of Hg2+ ions. The detection behavior can be precisely monitored by a “turn-on” fluorescence phenomenon with the limit of detection (LOD) of 8.48 ppb, comparable to or higher than many reported Hg2+ sensors. Moreover, POSS-Se demonstrates a selective and efficient adsorption of Hg2+ ions with a maximum capacity of 952 mg g–1. The value is higher than most reported adsorbents for Hg2+ ions, typically thiol and/or thioether functional materials, indicating its promise as an efficient adsorbent for the selective removal of Hg2+ ions from industrial wastewater. This work may open up new horizons for the exploration of selenium-containing functional POSS

    Study on Rapid Detection Method for Degradation Performance of Polyolefin-Based Degradable Plastics

    No full text
    In order to accurately determine the degradation performance of polyolefin-based degradable plastics, the concept of bioassimilated carbon is proposed for the first time in this paper; the bioactive and hydrophilic organic carbon in plastic degradation products is defined as bioassimilation carbon. A method for the detection of the carbonyl index and bioassimilated carbon conversion rate in polyolefin degradable plastics was developed to quickly identify its degradation performance. The measurement results show that the bioassimilated carbon conversion rate of more than 70% can be used to replace the biodegradation rate index to achieve the purpose of quickly identifying the degradation performance of plastics. The deterioration detection cycle proposed by the current common standards implemented in American Society of Testing Materials: ASTM D6400 “Specification for Composting Plastics” can be shortened from 1 year to 1 month. The standard system for catalytic degradation of plastics provides detection methods for polyolefin-based catalytic degradation materials (microplastics), and solves the problems of long detection cycle and poor detection efficiency. Thus, this method has promise for use as a relevant standard method for accurately providing a reference for the assessment

    Performance Assessment and Comparative Study of a Permanent Magnet Machine With Axial Flux Regulator

    No full text

    Efficacy and Safety of KRASG12C Inhibitors in Advanced Solid Tumors with KRASG12C-mutated: A Single-arm Meta-analysis

    No full text
    Objective To systematically study the efficacy and safety of KRASG12C inhibitors in advanced solid tumors with KRASG12C-mutated. Methods Computer searches from PubMed, The Cochrane Library, Web of Science, Embase, CNKI, and CBM databases were conducted to collect clinical studies on KRASG12C inhibitors in advanced solid tumors with KRASG12C-mutated, with a search time from inception to October 12, 2022. Then, two investigators independently screened the literature, extracted information, assessed the risk of bias in included studies, and performed meta-analyses using RevMan 5.4 software. Results There were four publications included, all of which were single-arm clinical studies. The KRASG12C inhibitors that completed clinical phase â…  and â…ˇ trials were sotorasib and adagrasib, with two publications each. A total of 388 and 394 patients were included in the efficacy evaluation and safety evaluation, respectively. Resultsof the Meta-analysis showed that the patients had objective response rate, overall disease control, and disease stabilization rates of 35%, 82%, and 45%, respectively. In addition, the rate of serious adverse events, general adverse events, and all adverse events in patients was 2%, 28%, and 79%, respectively. Moreover, the rate of partial remission of disease in NSCLC patients was 38%. Conclusion The KRASG12C inhibitors sotorasib and adagrasib exhibited good efficacy and high safety in advanced solid tumors

    3D Macroporous and Mesoporous Sponge for Selective Pollutant Removal

    No full text
    Three-dimensional (3D) hierarchically porous materials are widely used owing to their unique pore structures and rich specific surface areas. Herein, we design a 3D macroporous and mesoporous silicone sponge via a one-pot efficient thiol oxidative coupling reaction between polysiloxanes and HS-modified mesoporous polymers. The diameters of the macropores and mesopores are higher and lower than 50 nm, respectively. The sponge possesses a surface area of 20.72 m2 g–1, a porosity of 61.39%, and good compression and thermal insulation properties. A dye adsorption evaluation confirmed that the sponge selectively removed cation dyes from a mixed dye solution. This synthesis method for 3D macroporous and mesoporous sponges can potentially synthesize composites of other mesoporous materials
    corecore