2,024 research outputs found

    Study the Heavy Molecular States in Quark Model with Meson Exchange Interaction

    Full text link
    Some charmonium-like resonances such as X(3872) can be interpreted as possible D()D()D^{(*)}D^{(*)} molecular states. Within the quark model, we study the structure of such molecular states and the similar B()B()B^{(*)}B^{(*)} molecular states by taking into account of the light meson exchange (π\pi, η\eta, ρ\rho, ω\omega and σ\sigma) between two light quarks from different mesons

    Dynamical study of the possible molecular state X(3872) with the s-channel one gluon exchange interaction

    Full text link
    The recently observed X(3872) resonance, which is difficult to be assigned a conventional ccˉc\bar{c} charmonium state in the quark model, may be interpreted as a molecular state. Such a molecular state is a hidden flavor four quark state because of its charmonium-like quantum numbers. The s-channel one gluon exchange is an interaction which only acts in the hidden flavor multi-quark system. In this paper, we will study the X(3872) and other similiar hidden flavor molecular states in a quark model by taking into account of the s-channel one gluon exchange interaction

    Demystifying RCE Vulnerabilities in LLM-Integrated Apps

    Full text link
    In recent years, Large Language Models (LLMs) have demonstrated remarkable potential across various downstream tasks. LLM-integrated frameworks, which serve as the essential infrastructure, have given rise to many LLM-integrated web apps. However, some of these frameworks suffer from Remote Code Execution (RCE) vulnerabilities, allowing attackers to execute arbitrary code on apps' servers remotely via prompt injections. Despite the severity of these vulnerabilities, no existing work has been conducted for a systematic investigation of them. This leaves a great challenge on how to detect vulnerabilities in frameworks as well as LLM-integrated apps in real-world scenarios. To fill this gap, we present two novel strategies, including 1) a static analysis-based tool called LLMSmith to scan the source code of the framework to detect potential RCE vulnerabilities and 2) a prompt-based automated testing approach to verify the vulnerability in LLM-integrated web apps. We discovered 13 vulnerabilities in 6 frameworks, including 12 RCE vulnerabilities and 1 arbitrary file read/write vulnerability. 11 of them are confirmed by the framework developers, resulting in the assignment of 7 CVE IDs. After testing 51 apps, we found vulnerabilities in 17 apps, 16 of which are vulnerable to RCE and 1 to SQL injection. We responsibly reported all 17 issues to the corresponding developers and received acknowledgments. Furthermore, we amplify the attack impact beyond achieving RCE by allowing attackers to exploit other app users (e.g. app responses hijacking, user API key leakage) without direct interaction between the attacker and the victim. Lastly, we propose some mitigating strategies for improving the security awareness of both framework and app developers, helping them to mitigate these risks effectively

    Molecular Beam Epitaxy Growth of Superconducting LiFeAs Film on SrTiO3(001) Substrate

    Full text link
    The stoichiometric "111" iron-based superconductor, LiFeAs, has attacted great research interest in recent years. For the first time, we have successfully grown LiFeAs thin film by molecular beam epitaxy (MBE) on SrTiO3(001) substrate, and studied the interfacial growth behavior by reflection high energy electron diffraction (RHEED) and low-temperature scanning tunneling microscope (LT-STM). The effects of substrate temperature and Li/Fe flux ratio were investigated. Uniform LiFeAs film as thin as 3 quintuple-layer (QL) is formed. Superconducting gap appears in LiFeAs films thicker than 4 QL at 4.7 K. When the film is thicker than 13 QL, the superconducting gap determined by the distance between coherence peaks is about 7 meV, close to the value of bulk material. The ex situ transport measurement of thick LiFeAs film shows a sharp superconducting transition around 16 K. The upper critical field, Hc2(0)=13.0 T, is estimated from the temperature dependent magnetoresistance. The precise thickness and quality control of LiFeAs film paves the road of growing similar ultrathin iron arsenide films.Comment: 7 pages, 6 figure

    Spatio-Temporal Change of LakeWater Extent in Wuhan Urban Agglomeration Based on Landsat Images from 1987 to 2015

    Get PDF
    Urban lakes play an important role in urban development and environmental protection for the Wuhan urban agglomeration. Under the impacts of urbanization and climate change, understanding urban lake-water extent dynamics is significant. However, few studies on the lake-water extent changes for the Wuhan urban agglomeration exist. This research employed 1375 seasonally continuous Landsat TM/ETM+/OLI data scenes to evaluate the lake-water extent changes from 1987 to 2015. The random forest model was used to extract water bodies based on eleven feature variables, including six remote-sensing spectral bands and five spectral indices. An accuracy assessment yielded a mean classification accuracy of 93.11%, with a standard deviation of 2.26%. The calculated results revealed the following: (1) The average maximum lake-water area of the Wuhan urban agglomeration was 2262.17 km2 from 1987 to 2002, and it decreased to 2020.78 km2 from 2005 to 2015, with a loss of 241.39 km2 (10.67%). (2) The lake-water areas of loss of Wuhan, Huanggang, Xianning, and Xiaogan cities, were 114.83 km2, 44.40 km2, 45.39 km2, and 31.18 km2, respectively, with percentages of loss of 14.30%, 11.83%, 13.16%, and 23.05%, respectively. (3) The lake-water areas in the Wuhan urban agglomeration were 226.29 km2, 322.71 km2, 460.35 km2, 400.79 km2, 535.51 km2, and 635.42 km2 under water inundation frequencies of 5%–10%, 10%–20%, 20%–40%, 40%–60%, 60%–80%, and 80%–100%, respectively. The Wuhan urban agglomeration was approved as the pilot area for national comprehensive reform, for promoting resource-saving and environmentally friendly developments. This study could be used as guidance for lake protection and water resource management

    6DOF Pose Estimation of a 3D Rigid Object based on Edge-enhanced Point Pair Features

    Full text link
    The point pair feature (PPF) is widely used for 6D pose estimation. In this paper, we propose an efficient 6D pose estimation method based on the PPF framework. We introduce a well-targeted down-sampling strategy that focuses more on edge area for efficient feature extraction of complex geometry. A pose hypothesis validation approach is proposed to resolve the symmetric ambiguity by calculating edge matching degree. We perform evaluations on two challenging datasets and one real-world collected dataset, demonstrating the superiority of our method on pose estimation of geometrically complex, occluded, symmetrical objects. We further validate our method by applying it to simulated punctures.Comment: 16 pages,20 figure
    corecore