14,949 research outputs found

    Work Function of Single-wall Silicon Carbide Nanotube

    Full text link
    Using first-principles calculations, we study the work function of single wall silicon carbide nanotube (SiCNT). The work function is found to be highly dependent on the tube chirality and diameter. It increases with decreasing the tube diameter. The work function of zigzag SiCNT is always larger than that of armchair SiCNT. We reveal that the difference between the work function of zigzag and armchair SiCNT comes from their different intrinsic electronic structures, for which the singly degenerate energy band above the Fermi level of zigzag SiCNT is specifically responsible. Our finding offers potential usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure

    Block-block entanglement and quantum phase transitions in one-dimensional extended Hubbard model

    Full text link
    In this paper, we study block-block entanglement in the ground state of one-dimensional extended Hubbard model. Our results show that the phase diagram derived from the block-block entanglement manifests richer structure than that of the local (single site) entanglement because it comprises nonlocal correlation. Besides phases characterized by the charge-density-wave, the spin-density-wave, and phase-separation, which can be sketched out by the local entanglement, singlet superconductivity phase could be identified on the contour map of the block-block entanglement. Scaling analysis shows that log2(l){\rm log}_2(l) behavior of the block-block entanglement may exist in both non-critical and the critical regions, while some local extremum are induced by the finite-size effect. We also study the block-block entanglement defined in the momentum space and discuss its relation to the phase transition from singlet superconducting state to the charge-density-wave state.Comment: 8 pages, 9 figure

    Beyond Reciprocity: A Conservation of Resources View on the Effects of Psychological Contract Violation on Third Parties

    Get PDF
    Building on conservation of resources theory, we cast resource depletion as a novel explanatory mechanism to explain why employees’ experience of psychological contract violation results in harm to third parties outside the employee-organization exchange dyad. This resource-based perspective extends and complements the dominant social exchange perspective which views employee reactions to psychological contract violation as targeting the source of the violation—the organization. The present article reports on 3 studies. Study 1 conducted an experiment with 109 participants and established the main effect of psychological contract violation on resource depletion. Study 2, using survey data from 315 medical employees and their immediate supervisors, found that after controlling for the social exchange mechanism (i.e., revenge cognitions toward the organization), resource depletion mediated the indirect effects of psychological contract violation on supervisory reports of employees’ interpersonal harming toward coworkers and decision-making vigilance for clients. Further, we found that organizational and professional identification played opposing moderating roles in the effects of violation on resource depletion and consequently behavioral outcomes, such that these mediated relationships were stronger when organizational identification was high, and weaker when professional identification was high. Study 3 replicated all the results obtained in Studies 1 and 2 with time-lagged data from 229 medical employees across 3 measurement points. The findings confirm that resource depletion is a more effective explanation of the consequences of violation on third parties than revenge cognitions, although both are useful in predicting organization-directed outcomes (i.e., civic virtue and organizational rule compliance)

    Superconductor-Nanowire Devices from Tunneling to the Multichannel Regime: Zero-Bias Oscillations and Magnetoconductance Crossover

    Full text link
    We present transport measurements in superconductor-nanowire devices with a gated constriction forming a quantum point contact. Zero-bias features in tunneling spectroscopy appear at finite magnetic fields, and oscillate in amplitude and split away from zero bias as a function of magnetic field and gate voltage. A crossover in magnetoconductance is observed: Magnetic fields above ~ 0.5 T enhance conductance in the low-conductance (tunneling) regime but suppress conductance in the high-conductance (multichannel) regime. We consider these results in the context of Majorana zero modes as well as alternatives, including Kondo effect and analogs of 0.7 structure in a disordered nanowire.Comment: Supplemental Material here: https://dl.dropbox.com/u/1742676/Churchill_Supplemental.pd

    Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    Full text link
    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two superconductor Nb contacts on a Si/SiO2_2 substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.Comment: 6 pages, 4 figure

    Parallax Contextual Representations For Stereo Matching

    Get PDF
    In this work, we study the context aggregation in stereo matching from a new parallax perspective. Unlike previous works, we propose to characterize and augment a pixel with its parallax contextual representation (PCR), which has not been explored before. We also propose a new concept called disparity prototype to describe the overall representation of a disparity plane. Our proposed PCR module consists of three steps: 1) divide disparity planes for a rough estimation of disparity; 2) estimate the disparity prototypes for each disparity plane; 3) derive PCR-augmented representations with disparity prototypes. Extensive experiments on various datasets using different networks validate the effectiveness of our proposal

    A new 111 type iron pnictide superconductor LiFeP

    Full text link
    A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arsenic. The new superconductor is featured with itinerant behavior at normal state that could helpful to understand the novel superconducting mechanism of iron pnictide compounds.Comment: 3 figures + 1 tabl

    Formation of Long Single Quantum Dots in High Quality InSb Nanowires Grown by Molecular Beam Epitaxy

    Full text link
    We report on realization and transport spectroscopy study of single quantum dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The nanowires employed are 50-80 nm in diameter and the QDs are defined in the nanowires between the source and drain contacts on a Si/SiO2_2 substrate. We show that highly tunable QD devices can be realized with the MBE-grown InSb nanowires and the gate-to-dot capacitance extracted in the many-electron regimes is scaled linearly with the longitudinal dot size, demonstrating that the devices are of single InSb nanowire QDs even with a longitudinal size of ~700 nm. In the few-electron regime, the quantum levels in the QDs are resolved and the Land\'e g-factors extracted for the quantum levels from the magnetotransport measurements are found to be strongly level-dependent and fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted from the magnetic field evolutions of a ground state and its neighboring excited state in an InSb nanowire QD and is on the order of ~300 ÎĽ\mueV. Our results establish that the MBE-grown InSb nanowires are of high crystal quality and are promising for the use in constructing novel quantum devices, such as entangled spin qubits, one-dimensional Wigner crystals and topological quantum computing devices.Comment: 19 pages, 5 figure
    • …
    corecore