2,747 research outputs found
Security Problems: An African Predicament
Lecture delivered on October 23, 1981.Discusses reasons and history of the security situation in Africa in the late 1970s and places the discussion in a historical context
The Global Challenge of Internal Displacement
I would like to address the subject of internal displacement from the perspective of four issues: the magnitude of the crisis, my conceptual approach to the mandate, the scope of activities I have undertaken pursuant to the mandate, and the need to address the root causes of internal displacement
Effect of Preirradiation Fluoride Treatment on the Physical Properties of Dentin
Objective. To determine the effects of preirradiation fluoride treatments on the Knoop hardness of dentin. Materials and Methods. Human posterior teeth mounted into acrylic resin molds were polished with silicon carbide (SiC) abrasives and 3-micron diamond paste. The Knoop hardness of dentin was measured with a Leco hardness instrument. The teeth were divided into groups of ten teeth per group as follows: no treatment (control), treatment with silver diamine fluoride (SDF), MI varnish (MI), and cavity shield (CS). The teeth were exposed to 2 Gy of daily radiation for six weeks using an X-Rad 320ix biological irradiator. Hardness was measured weekly, before, during, and after irradiation. The teeth were stored in artificial saliva at 37oC between radiation treatments. Results. In preirradiation dentin, a Knoop hardness value of 58.8 (14.1) KHN was obtained. Treatment with SDF significantly increased KHN before irradiation. Immediately after radiation treatment, hardness was significantly reduced in all experimental groups. Postirradiation fluoride treatments increased the hardness of dentin to varying degrees. Conclusions. Preirradiation fluoride treatment does not provide protection from decreases in the hardness of dentin. Treatment of teeth with fluoride formulations after radiation progressively restores the hardness of dentin to different degrees. © 2022 Francis K. Mante et al
Enhanced thermal stability of high-bismuth borate glasses by addition of iron
Glasses with nominal molar composition 20B2O3 – (80-x)Bi2O3 – xFe2O3 (where x = 0–40) were successfully prepared by melt-quenching. These glasses were characterised by multiple techniques including density, X-ray diffraction (XRD), X-Ray fluorescence (XRF), Raman, FT-IR and Mössbauer spectroscopies, dilatometry and differential thermal analysis (DTA). Partial replacement of Bi2O3 by Fe2O3 leads to decreasing density and molar volume and a substantial increase in thermal stability, as measured by several parameters, with maximum improvements achieved when x = 10-20. These improvements are accompanied by modest increases in dilatometric softening point. FT-IR and Raman spectra confirm the presence of BO3 and BiO6 structural units in all glasses, with glass structure apparently little affected by Fe2O3. Mössbauer spectroscopy confirms that iron is present partly as 4-fold coordinated Fe3+ in all glasses, with some 5- and / or 6- coordinated Fe3+ sites also present
- …