19 research outputs found

    Transcriptomic analysis reveals shared gene signatures and molecular mechanisms between obesity and periodontitis

    Get PDF
    BackgroundBoth obesity (OB) and periodontitis (PD) are chronic non-communicable diseases, and numerous epidemiological studies have demonstrated the association between these two diseases. However, the molecular mechanisms that could explain the association between OB and PD are largely unclear. This study aims to investigate the common gene signatures and biological pathways in OB and PD through bioinformatics analysis of publicly available transcriptome datasets.MethodsThe RNA expression profile datasets of OB (GSE104815) and PD (GSE106090) were used as training data, and GSE152991 and GSE16134 as validation data. After screening for differentially expressed genes (DEGs) shared by OB and PD, gene enrichment analysis, protein-protein interaction (PPI) network construction, GeneMANIA analysis, immune infiltration analysis and gene set enrichment analysis (GSEA) were performed. In addition, receiver operating characteristic (ROC) curves were used to assess the predictive accuracy of the hub gene. Finally, we constructed the hub gene-associated TF-miRNA-mRNA regulatory network.ResultsWe identified a total of 147 DEGs shared by OB and PD (38 down-regulated and 109 up-regulated). Functional analysis showed that these genes were mainly enriched in immune-related pathways such as B cell receptor signalling, leukocyte migration and cellular defence responses. 14 hub genes (FGR, MNDA, NCF2, FYB1, EVI2B, LY86, IGSF6, CTSS, CXCR4, LCK, FCN1, CXCL2, P2RY13, MMP7) showed high sensitivity and specificity in the ROC curve analysis. The results of immune infiltration analysis showed that immune cells such as macrophages, activated CD4 T cells and immune B cells were present at high infiltration levels in both OB and PD samples.The results of GeneMANIA analysis and GSEA analysis suggested that five key genes (FGR, LCK, FYB1, LY86 and P2RY13) may be strongly associated with macrophages. Finally, we constructed a TF-miRNA-mRNA regulatory network consisting of 233 transcription factors (TFs), 8 miRNAs and 14 mRNAs based on the validated information obtained from the database.ConclusionsFive key genes (FGR, LCK, FYB1, LY86, P2RY13) may be important biomarkers of OB and PD. These genes may play an important role in the pathogenesis of OB and PD by affecting macrophage activity and participating in immune regulation and inflammatory responses

    Precision measurements of A1N in the deep inelastic regime

    Get PDF
    We have performed precision measurements of the double-spin virtual-photon asymmetry A1A1 on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized 3He target. Our data cover a wide kinematic range 0.277≤x≤0.5480.277≤x≤0.548 at an average Q2Q2 value of 3.078 (GeV/c)2, doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of anA1n zero crossing near x=0.5x=0.5. We find no evidence of a transition to a positive slope in(Δd+Δd¯)/(d+d¯) up to x=0.548x=0.548

    Ancient mural inpainting via structure information guided two-branch model

    No full text
    Abstract Ancient murals are important cultural heritages for our exploration of ancient civilizations and are of great research value. Due to long-time exposure to the environment, ancient murals often suffer from damage (deterioration) such as cracks, scratches, corrosion, paint loss, and even large-region falling off. It is an urgent work to protect and restore these damaged ancient murals. Mural inpainting techniques refer to virtually filling the deteriorated regions by reconstructing the structure and texture elements of the mural images. Most existing mural inpainting approaches fail to fill loss contents that contain complex structures and diverse patterns since they neglect the importance of structure guidance. In this paper, we propose a structure-guided two-branch model based on the generative adversarial network (GAN) for ancient mural inpainting. In the proposed model, the mural inpainting process can be divided into two stages: structure reconstruction and content restoration. These two stages are conducted by using a structure reconstruction network (SRN) and a content restoration network (CRN), respectively. In the structure reconstruction stage, SRN employs the Gated Convolution and the Fast Fourier Convolution (FFC) residual block to reconstruct the missing structures of the damaged murals. In the content restoration stage, CRN uses the structures (generated by SRN) to guide the missing content restoration of the murals. We design a two-branch parallel encoder to improve the texture and color restoration quality for the missing regions of the murals. Moreover, we propose a cascade attention module that can capture long-term relevance information in the deep features. It helps to alleviate the texture-blur and color-bias problem. We conduct experiments on both simulated and real damaged murals, and compare our inpainting results with other four competitive approaches. Experimental results show that our proposed model outperforms other approaches in terms of texture clarity, color consistency and structural continuity of the restored mural images. In addition, the mural inpainting results of our model can achieve comparatively high quantitative evaluation metrics

    Mean exit time and escape probability for the anomalous processes with the tempered power-law waiting times

    No full text
    This paper discusses two deterministic quantities, mean first exit time and escape probability, for the anomalous processes having the tempered Lévy stable waiting times with the tempering index μ>0\mu>0 and the stability index 0<α≤10<\alpha \le 1 . We derive the nonlocal elliptic partial differential equations (PDEs) governing the mean first exit time and escape probability. Based on the analysis of the derived PDEs, some interesting phenomena are observed

    A New ZVS Tuning Method for Double-Sided LCC Compensated Wireless Power Transfer System

    No full text
    This paper presents a new zero voltage switching (ZVS) tuning method for the double-sided inductor/capacitor/capacitor (LCC) compensated wireless power transfer (WPT) system. An additional capacitor is added in the secondary side of the double-sided LCC compensation network in order to tune the network to realize ZVS operation for the primary-side switches. With the proposed tuning method, the turn off current of the primary-side switches at the low input voltage range can be reduced compared with the previous ZVS tuning method. Consequently, the efficiency of the WPT at the low input voltage range is improved. Moreover, the relationship between the input voltage and the output power is more linear than that of the previous ZVS tuning method. In addition, the proposed method has a lower start-up voltage. The analysis and validity of the proposed tuning method are verified by simulation and experimental results. A WPT system with up to 3.5 kW output power is built, and 95.9% overall peak efficiency is achieved

    MHlinker: Research on a Joint Extraction Method of Fault Entity Relationship for Mine Hoist

    No full text
    Triplet extraction is the key technology to automatically construct knowledge graphs. Extracting the triplet of mechanical equipment fault relationships is of great significance in constructing the fault diagnosis of a mine hoist. The pipeline triple extraction method will bring problems such as error accumulation and information redundancy. The existing joint learning methods cannot be applied to fault texts with more overlapping relationships, ignoring the particularity of professional knowledge in the field of complex mechanical equipment faults. Therefore, based on the Chinese pre-trained language model BERT Whole Word Masking (BERT-wwm), this paper proposes a joint entity and relation extraction model MHlinker (Mine Hoist linker, MHlinker) for the mine hoist fault field. This method uses BERT-wwm as the underlying encoder. In the entity recognition stage, the classification matrix is constructed using the multi-head extraction paradigm, which effectively solves the problem of entity nesting. The results show that this method enhances the model’s ability to extract fault relationships as a whole. When the small-scale manually labeled mine hoist fault text data set is tested, the extraction effect of entities and relationships is significantly improved compared with several baseline models

    Loss of Wnt16 Leads to Skeletal Deformities and Downregulation of Bone Developmental Pathway in Zebrafish

    No full text
    Wingless-type MMTV integration site family, member 16 (wnt16), is a wnt ligand that participates in the regulation of vertebrate skeletal development. Studies have shown that wnt16 can regulate bone metabolism, but its molecular mechanism remains largely undefined. We obtained the wnt16−/− zebrafish model using the CRISPR-Cas9-mediated gene knockout screen with 11 bp deletion in wnt16, which led to the premature termination of amino acid translation and significantly reduced wnt16 expression, thus obtaining the wnt16−/− zebrafish model. The expression of wnt16 in bone-related parts was detected via in situ hybridization. The head, spine, and tail exhibited significant deformities, and the bone mineral density and trabecular bone decreased in wnt16−/− using light microscopy and micro-CT analysis. RNA sequencing was performed to explore the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the down-regulated DEGs are mainly concentrated in mTOR, FoxO, and VEGF pathways. Protein–protein interaction (PPI) network analysis was performed with the detected DEGs. Eight down-regulated DEGs including akt1, bnip4, ptena, vegfaa, twsg1b, prkab1a, prkab1b, and pla2g4f.2 were validated by qRT-PCR and the results were consistent with the RNA-seq data. Overall, our work provides key insights into the influence of wnt16 gene on skeletal development
    corecore