8 research outputs found

    RDMNet: Reliable Dense Matching Based Point Cloud Registration for Autonomous Driving

    Full text link
    Point cloud registration is an important task in robotics and autonomous driving to estimate the ego-motion of the vehicle. Recent advances following the coarse-to-fine manner show promising potential in point cloud registration. However, existing methods rely on good superpoint correspondences, which are hard to be obtained reliably and efficiently, thus resulting in less robust and accurate point cloud registration. In this paper, we propose a novel network, named RDMNet, to find dense point correspondences coarse-to-fine and improve final pose estimation based on such reliable correspondences. Our RDMNet uses a devised 3D-RoFormer mechanism to first extract distinctive superpoints and generates reliable superpoints matches between two point clouds. The proposed 3D-RoFormer fuses 3D position information into the transformer network, efficiently exploiting point clouds' contextual and geometric information to generate robust superpoint correspondences. RDMNet then propagates the sparse superpoints matches to dense point matches using the neighborhood information for accurate point cloud registration. We extensively evaluate our method on multiple datasets from different environments. The experimental results demonstrate that our method outperforms existing state-of-the-art approaches in all tested datasets with a strong generalization ability.Comment: 11 pages, 9 figure

    Grain Shape Genes: Shaping the Future of Rice Breeding

    No full text
    The main goals of rice breeding nowadays include increasing yield, improving grain quality, and promoting complete mechanized production to save labor costs. Rice grain shape, specified by three dimensions, including grain length, width and thickness, has a more precise meaning than grain size, contributing to grain appearance quality as well as grain weight and thus yield. Furthermore, the divergence of grain shape characters could be utilized in mechanical seed sorting in hybrid rice breeding systems, which has been succeeded in utilizing heterosis to achieve substantial increase in rice yield in the past decades. Several signaling pathways that regulate rice grain shape have been elucidated, including G protein signaling, ubiquitination-related pathway, mitogen-activated protein kinase signaling, phytohormone biosynthesis and signaling, microRNA process, and some other transcriptional regulatory pathways and regulators. This review summarized the recent progress on molecular mechanisms underlying rice grain shape determination and the potential of major genes in future breeding applications

    WGCNA Analysis Identifies the Hub Genes Related to Heat Stress in Seedling of Rice (Oryza sativa L.)

    No full text
    Frequent high temperature weather affects the growth and development of rice, resulting in the decline of seed–setting rate, deterioration of rice quality and reduction of yield. Although some high temperature tolerance genes have been cloned, there is still little success in solving the effects of high temperature stress in rice (Oryza sativa L.). Based on the transcriptional data of seven time points, the weighted correlation network analysis (WGCNA) method was used to construct a co–expression network of differentially expressed genes (DEGs) between the rice genotypes IR64 (tolerant to heat stress) and Koshihikari (susceptible to heat stress). There were four modules in both genotypes that were highly correlated with the time points after heat stress in the seedling. We further identified candidate hub genes through clustering and analysis of protein interaction network with known–core genes. The results showed that the ribosome and protein processing in the endoplasmic reticulum were the common pathways in response to heat stress between the two genotypes. The changes of starch and sucrose metabolism and the biosynthesis of secondary metabolites pathways are possible reasons for the sensitivity to heat stress for Koshihikari. Our findings provide an important reference for the understanding of high temperature response mechanisms and the cultivation of high temperature resistant materials

    Comparative Analysis of Heat-Tolerant and Heat-Susceptible Rice Highlights the Role of <i>OsNCED1</i> Gene in Heat Stress Tolerance

    No full text
    To elucidate the mechanism underlying the response of rice to heat stress (HS), the transcriptome profile of panicles was comparatively analyzed between the heat-tolerant line 252 (HTL252) and heat-susceptible line 082 (HSL082), two rice recombinant inbred lines (RILs). Our differentially expressed gene (DEG) analysis revealed that the DEGs are mainly associated with protein binding, catalysis, stress response, and cellular process. The MapMan analysis demonstrated that the heat-responsive (HR) genes for heat shock proteins, transcription factors, development, and phytohormones are specifically induced in HTL252 under HS. Based on the DEG analysis, the key gene OsNCED1 (Os02g0704000), which was induced under HS, was selected for further functional validation. Moreover, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key rate-limiting enzyme in the ABA biosynthetic pathway. Overexpression of OsNCED1 improved the HS tolerance of rice at the heading and flowering stage. OsNCED1-overexpression plants exhibited significant increases in pollen viability, seed setting rate, superoxide dismutase (SOD) and peroxidase (POD) activities, while significantly lower electrolyte leakage and malondialdehyde (MDA) content relative to the wild type (WT). These results suggested that OsNCED1 overexpression can improve the heat tolerance of rice by enhancing the antioxidant capacity. Overall, this study lays a foundation for revealing the molecular regulatory mechanism underlying the response of rice to prolonged HS

    Additional file 1 of OsVPE2, a Member of Vacuolar Processing Enzyme Family, Decreases Chilling Tolerance of Rice

    No full text
    Supplementary Material 1. Table S1: Primers used in this study. Table S2: The low-temperature seedling survivability (LTSS) of rice varieties with the two main haplotypes of OsVPE

    Image_1_Integrative transcriptomic analysis deciphering the role of rice bHLH transcription factor Os04g0301500 in mediating responses to biotic and abiotic stresses.pdf

    No full text
    Understanding the signaling pathways activated in response to these combined stresses and their crosstalk is crucial to breeding crop varieties with dual or multiple tolerances. However, most studies to date have predominantly focused on individual stress factors, leaving a significant gap in understanding plant responses to combined biotic and abiotic stresses. The bHLH family plays a multifaceted regulatory role in plant response to both abiotic and biotic stresses. In order to comprehensively identify and analyze the bHLH gene family in rice, we identified putative OsbHLHs by multi-step homolog search, and phylogenic analysis, molecular weights, isoelectric points, conserved domain screening were processed using MEGAX version 10.2.6. Following, integrative transcriptome analysis using 6 RNA-seq data including Xoo infection, heat, and cold stress was processed. The results showed that 106 OsbHLHs were identified and clustered into 17 clades. Os04g0301500 and Os04g0489600 are potential negative regulators of Xoo resistance in rice. In addition, Os04g0301500 was involved in non-freezing temperatures (around 4°C) but not to 10°C cold stresses, suggesting a complex interplay with temperature signaling pathways. The study concludes that Os04g0301500 may play a crucial role in integrating biotic and abiotic stress responses in rice, potentially serving as a key regulator of plant resilience under changing environmental conditions, which could be important for further multiple stresses enhancement and molecular breeding through genetic engineering in rice.</p

    Exogenous Kinetin Modulates ROS Homeostasis to Affect Heat Tolerance in Rice Seedlings

    No full text
    Heat stress caused by rapidly changing climate warming has become a serious threat to crop growth worldwide. Exogenous cytokinin (CK) kinetin (KT) has been shown to have positive effects in improving salt and drought tolerance in plants. However, the mechanism of KT in heat tolerance in rice is poorly understood. Here, we found that exogenously adequate application of KT improved the heat stress tolerance of rice seedlings, with the best effect observed when the application concentration was 10−9 M. In addition, exogenous application of 10−9 M KT promoted the expression of CK-responsive OsRR genes, reduced membrane damage and reactive oxygen species (ROS) accumulation in rice, and increased the activity of antioxidant enzymes. Meanwhile, exogenous 10−9 M KT treatment significantly enhanced the expression of antioxidant enzymes, heat activation, and defense-related genes. In conclusion, exogenous KT treatment regulates heat tolerance in rice seedlings by modulating the dynamic balance of ROS in plants under heat stress

    Table_3_Rice cellulose synthase-like protein OsCSLD4 coordinates the trade-off between plant growth and defense.xlsx

    No full text
    Plant cell wall is a complex and changeable structure, which is very important for plant growth and development. It is clear that cell wall polysaccharide synthases have critical functions in rice growth and abiotic stress, yet their role in plant response to pathogen invasion is poorly understood. Here, we describe a dwarf and narrowed leaf in Hejiang 19 (dnl19) mutant in rice, which shows multiple growth defects such as reduced plant height, enlarged lamina joint angle, curled leaf morphology, and a decrease in panicle length and seed setting. MutMap analysis, genetic complementation and gene knockout mutant show that cellulose synthase-like D4 (OsCSLD4) is the causal gene for DNL19. Loss function of OsCSLD4 leads to a constitutive activation of defense response in rice. After inoculation with rice blast and bacterial blight, dnl19 displays an enhanced disease resistance. Widely targeted metabolomics analysis reveals that disruption of OsCSLD4 in dnl19 resulted in significant increase of L-valine, L-asparagine, L-histidine, L-alanine, gentisic acid, but significant decrease of L-aspartic acid, malic acid, 6-phosphogluconic acid, glucose 6-phosphate, galactose 1-phosphate, gluconic acid, D-aspartic acid. Collectively, our data reveals the importance of OsCSLD4 in balancing the trade-off between rice growth and defense.</p
    corecore