1,933 research outputs found

    Bis[μ3-N′-oxidopyridine-2-carbox­imidamidato(2−)]bis­[μ2-N′-oxido­pyridine-2-carboximidamidato(1−)]tetra­pyridine­tetra­nickel(II) dinitrate

    Get PDF
    The title compound, [Ni4(C6H5N3O)2(C6H6N3O)2(C5H5N)4](NO3)2, is a tetra­nuclear nickel complex containing a single-decker cation, located on an inversion center. The two unique NiII cations are N,N′,N′′,O-chelated by carbox­imid­amid­ate(2−) and carboximidamidate(1−) anions, forming a distorted four-coordinate planar structure, while the other two NiII atoms are N,N′,O,O′-chelated by the same bridging ligands and two pyridine mol­ecules, affording six-coordinated metals in an octa­hedral geometry. The cation is isostructural with the complex crystallized with perchlorate counter-ions in place of nitrate

    Enabling controlling complex networks with local topological information

    Get PDF
    Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulflling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired fnal state in fnite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefned state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efciently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.The work was partially supported by National Science Foundation of China (61603209), and Beijing Natural Science Foundation (4164086), and the Study of Brain-Inspired Computing System of Tsinghua University program (20151080467), and Ministry of Education, Singapore, under contracts RG28/14, MOE2014-T2-1-028 and MOE2016-T2-1-119. Part of this work is an outcome of the Future Resilient Systems project at the Singapore-ETH Centre (SEC), which is funded by the National Research Foundation of Singapore (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. (61603209 - National Science Foundation of China; 4164086 - Beijing Natural Science Foundation; 20151080467 - Study of Brain-Inspired Computing System of Tsinghua University program; RG28/14 - Ministry of Education, Singapore; MOE2014-T2-1-028 - Ministry of Education, Singapore; MOE2016-T2-1-119 - Ministry of Education, Singapore; National Research Foundation of Singapore (NRF) under Campus for Research Excellence and Technological Enterprise (CREATE) programme)Published versio

    Author correction: Enabling controlling complex networks with local topological information

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-018-22655-5, published online 15 March 2018. The Acknowledgements section in this Article is incomplete.The work was partially supported by National Science Foundation of China (61603209, 61327902), and Beijing Natural Science Foundation (4164086), and the Study of Brain-Inspired Computing System of Tsinghua University program (20151080467), and SuZhou-Tsinghua innovation leading program 2016SZ0102, and Ministry of Education, Singapore, under contracts RG28/14, MOE2014-T2-1-028 and MOE2016-T2-1-119. Part of this work is an outcome of the Future Resilient Systems project at the Singapore-ETH Centre (SEC), which is funded by the National Research Foundation of Singapore (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) program. (61603209 - National Science Foundation of China; 61327902 - National Science Foundation of China; 4164086 - Beijing Natural Science Foundation; 20151080467 - Study of Brain-Inspired Computing System of Tsinghua University program; 2016SZ0102 - SuZhou-Tsinghua innovation leading program; RG28/14 - Ministry of Education, Singapore; MOE2014-T2-1-028 - Ministry of Education, Singapore; MOE2016-T2-1-119 - Ministry of Education, Singapore; National Research Foundation of Singapore (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) program)Published versio

    Bis(μ2-pyridine-2-carboxamide oximato)bis­[(pyridine-2-carboxamide oxime)zinc] dinitrate

    Get PDF
    In the title dinuclear compound, [Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2, the ZnII cation is N,N′-chelated by one pyridine-2-carboxamide oximate anion and one pyridine-2-carboxamide oxime mol­ecule, and is further bridged by an oxime O atom from the adjacent pyridine-2-carboxamide oximate anion, forming a distorted trigonal bipyramidal coordination. Two pyridine-2-carboxamide oximate anions bridge two ZnII cations to form the centrosymmetric dinuclear mol­ecule. Extensive O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds are present in the crystal structure

    Phenanthrothiophene-Triazine Star-Shaped Discotic Liquid Crystals: Synthesis, Self-Assembly, and Stimuli-Responsive Fluorescence Properties

    Get PDF
    Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators

    Understanding Transport of an Elastic, Spherical Particle through a Confining Channel

    Get PDF
    The transport of soft particles through narrow channels or pores is ubiquitous in biological systems and industrial processes. On many occasions, the particles deform and temporarily block the channel, inducing a built-up pressure. This pressure buildup often has a profound effect on the behavior of the respective system; yet, it is difficult to be characterized. In this work, we establish a quantitative correlation between the built-up pressure and the material and geometry properties through experiments and mechanics analysis. We fabricate microgels with a controlled diameter and elastic modulus by microfluidics. We then force them to individually pass through a constrictive or straight confining channel and monitor the pressure variation across the channel. To interpret the pressure measurement, we develop an analytical model based on the Neo-Hookean material law to quantify the dependence of the maximum built-up pressure on the radius ratio of the elastic sphere to the channel, the elastic modulus of the sphere, and two constant parameters in the friction constitutive law between the sphere and the channel wall. This model not only agrees very well with the experimental measurement conducted at large microgel deformation but also recovers the classical theory of contact at small deformation. Featuring a balance between accuracy and simplicity, our result could shed light on understanding various biological and engineering processes involving the passage of elastic particles through narrow channels or pores

    Epidemiological survey of school-age children with low vision in Zhouqu County of Gannan Tibetan autonomous prefecture of Gansu province

    Get PDF
    AIM: To have a detailed picture of school-age children's eyesight status, and the main factors that caused their low vision in Zhouqu County of Gannan Tibetan autonomous prefecture of Gansu province. METHODS: The census work of knowing school-age children's eyesight status was implemented through visual inspection, conventional ophthalmic examination, optometry checks, etc. The results were compared with other domestic epidemiological data. RESULTS: Altogether 536 people with low vision were identified through survey and the rate was 21.12%. Among those people, the number of myopia patients accounted for 80.59% and the prevalence rate was 17.02%. Besides, the prevalence rate of presbyopia was 2.05%, amblyopia 2.76%, strabismus 1.02%, ocular trauma 0.95%, and congenital eye disease 0.71%. CONCLUSION: The prevalence rate of low vision was related with several factors such as gender and nationality. The rate increases with age and the myopia is the primary element that causes low vision
    • …
    corecore