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ABSTRACT

The transport of soft particles through narrow channels or pores is ubiquitous in biological systems and industrial processes. On many occasions,
the particles deform and temporarily block the channel, inducing a built-up pressure. This pressure buildup often has a profound effect on the
behavior of the respective system; yet, it is difficult to be characterized. In this work, we establish a quantitative correlation between the built-up
pressure and the material and geometry properties through experiments and mechanics analysis. We fabricate microgels with a controlled diame-
ter and elastic modulus by microfluidics. We then force them to individually pass through a constrictive or straight confining channel and moni-
tor the pressure variation across the channel. To interpret the pressure measurement, we develop an analytical model based on the Neo-Hookean
material law to quantify the dependence of the maximum built-up pressure on the radius ratio of the elastic sphere to the channel, the elastic
modulus of the sphere, and two constant parameters in the friction constitutive law between the sphere and the channel wall. This model not
only agrees very well with the experimental measurement conducted at large microgel deformation but also recovers the classical theory of contact
at small deformation. Featuring a balance between accuracy and simplicity, our result could shed light on understanding various biological and
engineering processes involving the passage of elastic particles through narrow channels or pores.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139887

Transport of soft particles through narrow channels or pores is
ubiquitous in natural and engineering processes. For example, red
blood cells squeeze through tiny capillaries;1,2 tris-acryl gelatin micro-
spheres penetrate into small vessels in therapeutic embolization;3,4 and
preformed particle gels invade into a porous oil reservoir for improved
conformance control.5,6 On many occasions, the soft body deforms
and blocks the channel as it moves, inducing a pressure buildup across
the channel. This pressure buildup often has a profound effect on the
behavior of the biological or industrial system. However, it is challeng-
ing, sometimes impossible, to measure this pressure. Instead, we are
limited to controlling or measuring the size and material properties of
the soft body, the channel size, and the flow properties. Therefore, it is
desired to establish a quantitative correlation between the built-up
pressure and the measurable or controllable properties. Since many
relevant systems involve gel-based soft bodies, several studies have
quantitatively investigated the deformation and transport of synthetic

hydrogel micro-spheres through tapered or constrictive channels
through experimental and analytical methods.7–12 The experimental
studies mostly exclude the friction or adhesion between the microgel
and channel wall and focus on the relationship between the pressure, the
elastic modulus of microgels, and the geometrical parameters in the
equilibrium state.7–10 To interpret the experimental measurements, anal-
yses were conducted under the assumption of uniform strain and stress
distribution.7–9 Although numerical simulation and mechanics analysis
with more general stress–strain relations were attempted, the resulting
models are rather complicated and not verified by experiments.11,12

In this work, we study the transport of an elastic, spherical parti-
cle in a constrictive or straight confining channel with a circular cross
section aiming to quantitatively correlate the channel-blockage
induced pressure with the radius ratio of the sphere to the channel, the
elastic modulus of the particle, and the friction and adhesion proper-
ties between the particle and channel wall. We fabricate microgels with
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a controlled diameter and properties by microfluidics. We then inject
the microgels into circular constrictive or straight confining channels
and monitor the built-up pressure. We further develop an analytical
model for the built-up pressure based on the Neo-Hookean material
law. The model prediction agrees very well with the pressure measure-
ment conducted at large particle deformation, which shows an expo-
nential dependence on the radius ratio. Moreover, the model recovers
the classical theory of contact at small deformation. Featuring a bal-
ance between simplicity and accuracy, the developed pressure-
property correlation could shed light on understanding many indus-
trial and biological processes involving the passage of deformable
particles through narrow channels or pores.

We fabricated polyacrylamide microgels with precisely tunable
sizes and mechanical properties using microfluidics.13–15 The constric-
tive microchannels were made by pulling round glass capillaries with a
pipette puller (Sutter Instrument P-1000). The movement of microgels
in the channel is driven by a flow rate-controlled syringe pump
(Harvard Apparatus PHD 4000). We connected a pressure transducer
(Harvard Apparatus P75) to the inlet of the channel to monitor the
pressure variation with a temporal resolution of 0.1 s. The channel
outlet is open to the atmosphere and at the same horizontal level as
the transducer. Here, we adopt the flow rate-controlled method to
mimic realistic application scenarios that usually involve non-stop pas-
sage of soft particles through confined channels or pores. Therefore,
under such a small timescale, the volume change of microgels can be
neglected (supplementary material). We observed the movement of
microgels under a microscope (Nikon Ts2R) and recorded the process
using a digital microscope camera (Nikon DS-Fi2) at a rate of 15 fps.
The experimental setup is schematically illustrated in Fig. 1. The fabri-
cation of microgels and constrictive channels is elaborated in the sup-
plementary material.

The motion of a microgel in a constrictive channel can be divided
into three stages: (i) before contacting the constriction, (ii) being con-
fined by the constriction, and (iii) after passing the constriction throat.
Figure 2(a) displays a microgel at the start and end of stage (ii). At the
moment shown in Fig. 2(a-2), the microgel is about to leave the throat,
at which point the pressure reaches the maximum. Figure 2(b) plots
the variation of pressure and velocity with time as three microgels suc-
cessively pass the constriction. The flow rate is set to 10ll/min. Points
(a-1) and (a-2) in Fig. 2(b) correspond to Figs. 2(a-1) and 2(a-2),
respectively. The pressure starts building up once the microgel comes
into contact with and is confined by the channel wall, increases almost

linearly as the microgel moves until reaching the throat, point (a-2),
and suddenly drops when the microgel passes the throat. From the
velocity profile shown in Fig. 2(b), the velocity of the microgel is
approximately constant for the most part, indicating a rough balance
between the pressure driving force and the resistance.

Since many biological processes involve the passage of soft bodies
in narrow, straight channels, we also injected microgels through a circu-
lar straight channel. The fabrication of glass constrictive channels with a
narrow straight part in the middle is described in the supplementary
material. Figure 2(c) shows a fluorescence micrograph of one deformed
microgel moving in the channel. Figure 2(d) shows typical pressure and
velocity variation with time. We started recording the pressure when the
microgel is confined in the constrictive part, shortly prior to entering
the straight section. The flow rate was 10ll/min before the microgel
enters the straight section. Once the microgel enters the straight section,
the flow rate is set to 0.2ll/min to maintain a constant speed for the
microgel. According to the Poiseuille law, the pressure drop in the chan-
nel due to viscous flow is less than 10Pa at such a low flow rate.
Therefore, the measured pressure is almost exclusively due to channel
blockage by microgels. During this process, the pressure remains stable,
which balances the constant resistance from the straight channel wall.

We measured and compared the maximum pressure in straight
and constrictive channels as a function of the radius ratio U of the
microgel to the channel. For constrictive channels, the maximum pres-
sure is the pressure at point (a-2) in Fig. 2. We injected microgels into
straight channels and constrictive channels with different diameters
ranging from 102lm to 175lm. The diameter of the microgels is
2006 10lm. We measured the diameter of each microgel before it
enters the narrow or constrictive part and calculated the radius ratio U
for each gel. The variation of pass-through pressure (maximum pres-
sure) P0 as a function of U is plotted in Fig. 3(a). At the same U, the
pressure in the constrictive channels is slightly smaller than, but very
close to, that in the straight channels. The smaller pressure in constric-
tive channels is because the entrance and exit angle near the throat
results in less confinement as the microgel moves in the throat. In the
special case when the channel has a rectangular cross section, a single
particle may block the channel and not be able to pass the constriction
due to fluid flow in the four corners, whereas multiple particles might
pass the constriction cooperatively. Readers may refer to Ref. 16 for a
detailed discussion about this phenomenon.

FIG. 1. (a) Schematics of the experimental setup for examining the transport of a
microgel in a constrictive channel; (b) micrograph of a constrictive channel; and (c)
fluorescence micrograph of microgels.

FIG. 2. (a) Fluorescence micrograph of a deformed microgel in a constrictive chan-
nel; (b) variation of pressure (P) and microgel velocity (v) with time (t) of three
microgels passing the constriction consecutively; (c) fluorescence micrograph of a
deformed microgel in a circular straight channel; and (d) variation of pressure (P)
and velocity (v) with time (t).
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Since the pressure for a microgel passing a constrictive channel
with a small entrance angle is similar to that in a straight channel, as
shown in Fig. 3(a), for the sake of simplicity without losing accuracy,
we analyze a deformed microgel in a straight channel. Figure 4(a) illus-
trates an originally spherical body with a radius R0 being confined and
deformed in a circular straight channel. The deformed gel experiences
a higher hydraulic pressure on its left than right side. We adopt two
cylindrical coordinate systems to describe the undeformed and
deformed configurations for the convenience of building a governing
equation and evaluating integrals. Since the problem is axisymmetric,
we use material coordinates R-Z for the undeformed reference config-
uration and Euler coordinates r-z for the current deformed body.

The sphere elongates in the z axis and contracts in the radial and
circumferential directions. We take the ambient environment as the
reference state and assume that the pressure at the right side is zero. At
the left side, pressure P0 is applied to drive the sphere, which is moving
at a constant velocity along the channel. Consider a gel disk of infini-
tesimal thickness in the deformed state, as shown in Fig. 4(b). Around
the circular edge, the disk is under normal traction rr in the radial
direction and shear traction sw in the axial direction. For simplicity,
we assume that the axial normal stress rz is uniform in each cross sec-
tion. We neglect the fluid flow through the permeable microgels

because the microgel becomes strongly confined in the constriction
very quickly in our experiments, as indicated by the rapid increase in
the built-up pressure to �10 kPa within 0.1 s (Fig. 2). At this condi-
tion, the microgel is strongly compressed biaxially, resulting in a signif-
icant decrease in the pore size of the gel network.9 We also assume
that the hydrodynamic pressure uniformly exerts on the upstream side
of the microgel. Therefore, force balance in the axial direction gives

pr20drz ¼ 2pr0swdz; (1)

where r0 is the radius of the channel. We adopt a linear frictional con-
stitutive law to relate sw to the normal stress rr ;

17

sw ¼ s0 � lrr ; (2)

where s0 is a constant parameter, which may be due to surface interac-
tion between the gel and the wall, i.e., adhesion,18 and l is a constant
parameter that correlates the shear traction sw with the normal stress.
Combining Eqs. (1) and (2), we have the following differential equa-
tion for rz :

drz

dz
¼

2 s0 � lrrð Þ
r0

: (3)

For hyperelastic material undergoing large deformation, we need a
non-linear stress–strain relation. Considering the material and the
range of stretch ratios involved in our experiments, we adopt the Neo-
Hookean law for impressible material,19 which gives

rr � rz ¼ 2C k2r � k2z
� �

; (4)

where C¼ E=6 for incompressible materials and E is the modulus of
elasticity. kr and kz are the stretch ratios in the radial and longitudinal
direction, respectively. Here, we neglect the gel deswelling that may
arise in confined condition since the volume change of the microgels
in our experiment is less than 10% for the flow rates we used in the
experiments, as shown in the supplementary material. If volume desw-
elling is significant, we will need to modify the stretch ratios accord-
ingly and consider the property change of the microgels due to
deswelling, i.e., the elastic modulus will increase as the volume
decreases. For the circular disk in Fig. 4(b) under uniform radial stress
around its edge, for the two in-plane normal stress components, rr ¼
rh and for the two stretch ratios, kr¼ kh. From incompressibility
assumption, krkhkz ¼ 1, and consequently, kz ¼ 1=k2r . Substituting
Eq. (4) into Eq. (3), we obtain a governing differential equation for
axial normal stress rz ,

drz

dz
þ 2l

r0
rz ¼

2
r0

s0 �
lE
3

k2r �
1

k4r

� �" #
: (5)

This is a first-order ordinary differential equation about rz in which
kr , as a function of z, can be independently derived from the radius
change. The two spherical caps next to the contact area [Fig. 4(a)] are
assumed to be in a hydrostatic state, and hence, rz 0ð Þ ¼ �P0 and
rz að Þ ¼ 0, with a being the length of the contact area. rz can be solved

by introducing an integrating factor e
Ð

2l
r0
dz and fitting the boundary

conditions,

rz að Þ ¼ e�
2l
r0
z
ðz
0

2s0
r0
� 2lE

3r0
k2r �

1

k4r

� �" #
e
2l
r0
zdz � P0

" #
; (6a)

FIG. 3. (a) Pressure variation with radius ratio U in constrictive channels (red dia-
monds) and straight channels (green circles); (b) comparison between analytical
prediction and experimental data.

FIG. 4. (a) Illustration of a sphere deformation in a circular straight channel with pres-
sure P exerted at the left side. The sphere is assumed to squeeze to the downstream
side, and therefore, no deformation occurs at the left side of the sphere. z and Z
axes are along the centerline of the channel toward the direction of the movement.
The intersection circle between the undeformed sphere and the channel wall is
placed on the z¼ 0 plane; (b) axial normal stress and shear stress on a disk element
in the deformed state; (c) variation of LnF with U and l; (d) fitting k-l relation.
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where

P0 ¼
ða
0

2s0
r0
þ 2lE

3r0

1

k4r
� k2r

� �" #
e
2l
r0
zdz: (6b)

Note that dz ¼ kzdZ ¼ 1=k2r dZ, a ¼
Ð a0
0 kzdZ ¼

Ð a0
0 1=k2r dZ,

a0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 � r20

p
, kr ¼ r0=RðZÞ, and R Zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 � Z � a0

2

� �2q
.

Using the nondimensional parameters U ¼ R0=r0; s ¼ s0
E ; and

1 ¼ Z=a0, we have

P0
E
¼ l U2 � 1ð Þ1:5

ð1
0

16
3

1� 12
� �

U2 � 21� 1ð Þ2 U2 � 1ð Þ
� �2	

þ U2 � 21� 1ð Þ2 U2 � 1ð Þ
� �

þ 1
i
e4l

ffiffiffiffiffiffiffiffiffi
U2�1
p

U21�U2�1
6 ½ 21�1ð Þ3þ1½ �d1

þ s
l

e
4l
3

ffiffiffiffiffiffiffiffiffi
U2�1
p

2U2þ1ð Þ � 1

 �

: (7)

Detailed derivation from Eq. (6b) to Eq. (7) is given in the supplemen-
tary material. We evaluate the integral in the above equation numeri-
cally. Denoting the integral as F, the plot of LnF vs U with l varying
from 0.05 to 0.35 is shown in Fig. 4(c). The figure shows that LnF
varies with U almost linearly. The dependence of the slope k on l can
be fitted as k ¼ 10:7lþ 3:6 [Fig. 4(d)]. All the LnF vs U lines pass
the point (1, 1) independent of the value of l. Therefore, F can be
approximated as F ffi e 10:7 lþ3:6ð Þ U�1ð Þþ1, and Eq. (7) is simplified as

P0
E
¼ l U2 � 1ð Þ1:5e 10:7lþ3:6ð Þ U�1ð Þþ1 þ s

l
e
4l
3

ffiffiffiffiffiffiffiffiffi
U2�1
p

2U2þ1ð Þ � 1

 �

: (8)

Fitting the experimental data in straight channels (diamonds in Fig. 3)
with least squares regression, shown as the blue dashed curve in Fig.
3(b), we find the constant l to be 0.17 and the nondimensional param-
eter s to be 1.6. We measured the modulus of elasticity of microgels
using AFM nano-indentation, which has the average value of 0.5 KPa.
The details of AFM measurements can be found in the supplementary
material. The resultant s0 and l are consistent with previous studies
on mechanical properties of gels.20,21 With only two fitting parameters,
Eq. (8) almost exactly captures the dependence of pressure on the
radius ratio. The first part of the driving pressure is proportional to E,
indicating that it is from the elastic deformation. The second part of
the pressure is proportional to the adhesion constant s0, related to the
radial compression through l, but independent of E.

When U is close to unity, the sphere and channel have a
small contact and Eq. (8) has a simple asymptotic expression,
P0
E ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 � 1
p� �3

eþ 4s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 � 1
p

, in which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 � 1
p

represents the
half contact length normalized by the radius of the channel, with the
higher order terms being ignored. Consequently, the first term in the
asymptotic expression indicates that the normal contact force is pro-
portional to the third power of the contact length, which is consistent
with classical Hertz theory of contact,22 and the second term, the con-
tribution from the adhesion, is proportional to the contact length.
Different from the large contact, now, the adhesion and radial com-
pression are decoupled. Eq. (8) not only gives the exponential depen-
dence of driving pressure on radius ratio U at a large scale contact but
also recovers the classical asymptotic behavior at a small contact.

In this work, we studied the deformation and passage of an elastic
sphere in narrow constrictive or straight channels through both

experiments and mechanics analysis. We found how the maximum
built-up pressure in a blocked channel (pass-through pressure) varies
with the radius ratio of the sphere to channel, the elastic modulus of
the sphere, and two constant parameters in the friction constitutive
law between the sphere and channel wall. We fabricated microgels
with a well-controlled size and properties using microfluidics and
monitored the pressure variation when the microgels were forced
through a straight or constrictive channel one at a time. At the same
radius ratio, the pass-through pressures for constrictive and straight
channels are almost the same given that the entrance angle of the con-
striction is small. To gain quantitative understanding of the pass-
through pressure, we establish a differential equation for the axial nor-
mal stress by balancing axial forces on an infinitesimal deformed disk
element in the circular channel. The Neo-Hookean material law is
adopted for elastic deformation, which is applicable to a variety of elas-
tomers, including highly stretchable hydrogels. We then find the rela-
tion among the driving pressure, material properties, and geometrical
parameters by solving the differential equation. This analytical model,
featuring sufficient simplicity and rooting from rigorous analysis, pre-
dicts the measured pass-through pressure as spherical microgels move
in constrictive channels at large deformation. Moreover, the model
recovers the classical theory of contact at small deformation. We
expect that the model can be used to interpret a variety of biological
and engineering processes involving the passage of elastic particles
through narrow channels. For pressure-controlled systems, if the parti-
cle is stuck in the channel and thus deswelling, we can also use the
model to estimate how much the gel should shrink before passing
through the channel. In order to accurately capture this process, a
rate-dependent model is currently being developed. The methodology
of developing this model can be readily extended to some
non-spherical particles as well, such as ellipsoid and circular cylinders.
We are currently working on deriving a universal model for several
particle geometries, which involves some parameters that characterize
the geometry. We expect that the pressure would have a similar depen-
dence on the radius mismatch of the particle to the constriction.

See the supplementary material for more details on the microflui-
dic fabrication of microgels, the fabrication of constrictive and straight
channels, the evaluation of gel deswelling, the measurement of elastic
modulus of the microgels, and the analytical derivation of Eq. (7).

J.F. acknowledges the support from The City College of New
York and American Chemical Society Petroleum Research Fund
(No. 57496-DNI9).
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