6,594 research outputs found

    Study on the mechanism of open-flavor strong decays

    Full text link
    The open-flavor strong decays are studied based on the interaction of potential quark model. The decay process is related to the s-channel contribution of the same scalar confinment and one-gluon-exchange(OGE) interaction in the quark model. After we adopt the prescription of massive gluons in time-like region from the lattice calculation, the approximation of four-fermion interaction is applied. The numerical calculation is performed to the meson decays in uu, dd, ss light flavor sector. The analysis of the D/SD/S ratios of b1ωπb_1\rightarrow \omega \pi and a1ρπa_1\rightarrow \rho \pi show that the scalar interaction should be dominant in the open-flavor decays

    High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement

    Full text link
    We present a quantum hyperdense coding protocol with hyperentanglement in polarization and spatial-mode degrees of freedom of photons first and then give the details for a quantum secure direct communication (QSDC) protocol based on this quantum hyperdense coding protocol. This QSDC protocol has the advantage of having a higher capacity than the quantum communication protocols with a qubit system. Compared with the QSDC protocol based on superdense coding with dd-dimensional systems, this QSDC protocol is more feasible as the preparation of a high-dimension quantum system is more difficult than that of a two-level quantum system at present.Comment: 5 pages, 2 figur

    Efficient Multi-Party Quantum Secret Sharing Schemes

    Full text link
    In this work, we generalize the quantum secret sharing scheme of Hillary, Bu\v{z}ek and Berthiaume[Phys. Rev. A59, 1829(1999)] into arbitrary multi-parties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Bu\v{z}ek-Berthiaume quantum secret sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum secret sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis Quantum secret sharing scheme is developed from the Lo-Chau-Ardehali technique[H. K. Lo, H. F. Chau and M. Ardehali, quant-ph/0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted Quantum secret sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh and Y. D. Han, Phys. Lett. A244, 489 (1998)] where all participants choose their measuring-basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the GHZ-states in a quantum secret sharing process are used to generate shared secret information.Comment: 7 page

    Dose-dependent effects of luteinizing hormone and follicle stimulating hormone on in vitro maturation, apoptosis, secretion function and expression of follicle stimulating hormone receptor and luteinizing hormone receptor of sheep oocytes

    Get PDF
    TThe present study compared the effects of follicle stimulating hormone (FSH) and luteinizing hormone (LH) on in vitro maturation (IVM), apoptosis, and secretion function in sheep oocytes, as well as gene expressions of the receptors (FSHR, LHR, and GnRHR) in cumulus-oocyte complexes (COCs). The COCs were recovered from sheep ovaries and pooled in groups. The COCs were cultured for 24 hours in IVM medium supplemented with various concentrations of LH (5–30 μg/mL) and FSH (5–30 IU/mL). They were allocated to LH-1 (5 µg/mL), LH-2 (10 µg/mL), LH-3 (20 µg/mL), and LH-4 (30 µg/mL) groups, and FSH-1 (5 IU/mL), FSH-2 (10 IU/mL), FSH-3 (20 IU/mL), and FSH-4 (30IU/mL) groups. The apoptosis of COCs was assessed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The maturation rates of oocytes improved gradually as LH and FSH concentration increased from 0 to 10 μg/mL(IU/mL), reaching a peak value of 44.1% of LH-2 and 48.5% of FSH-2 group. Oocyte apoptosis rates of LH-2 and FSH-2 groups were the lowest among LH- and FSH-treated groups, respectively. The germinal vesicle breakdown (GVBD) rate of the FSH-2 group was higher than that of the control group (CG) and FSH-4 groups. The GVBD rate of LH-2 group also increased in comparison with the CG group. FSH concentration of the FSH-2 group was greater than that of CG. Expression levels of FSHR, LHR, and GnRHR mRNAs of FSH-2, LH-3, and LH-3 group, respectively, were higher than CG. Levels of FSHR proteins in FSH-2 and FSH-3 groups were greater than CG. Levels of GnRHR proteins were increased with a maximum increment of FSH-4. The FSH and LH supplemented into the IVM medium could promote the maturation rate, reduce the apoptosis rate of sheep oocytes, and increase FSH concentrations in IVM medium fluid. Additionally, FSH and LH enhanced expression levels of FSHR, LHR, and GnRHR mRNAs of sheep COCs.Keywords: Apoptosis, cumulus-oocyte complexes, germinal vesicle breakdown, protein expression, recepto

    An Electrochemical Color-Switchable RGB Dye: Tristable [2]Catenane

    Get PDF
    We propose a design for an electrochemically driven RGB dye based on a tristable [2]catenane, in which the color of the molecule can be switched between Red, Green, and Blue by merely changing voltage. Based on DFT calculations, we conclude that the tristable [2]catenane should consist of a CBPQT^(4+) ring interlocked with a polyether macrocyle containing DNP (red), TTF (green), and FBZD (blue) units as the tunable RGB color-generating donors. Thus, at controllable voltages 0, V_1, and V_2, the [2]catenane is expected to display green, blue, and red colors, respectively. The advent of these RGB tristable molecules may have potential applications in low cost paperlike electronic displays

    Two-Step Sintering of Ceramics with Constant Grain-Size, II: BaTiO\u3csub\u3e3\u3c/sub\u3eand Ni–Cu–Zn Ferrite

    Get PDF
    We investigated the preparation of bulk dense nanocrystalline BaTiO3 and Ni–Cu–Zn ferrite ceramics using an unconventional two-step sintering strategy, which offers the advantage of not having grain growth while increasing density from about 75% to above 96%. Using nanosized powders, dense ferrite ceramics with a grain size of 200 nm and BaTiO3 with a grain size of 35 nm were obtained by two-step sintering. Like the previous studies on Y2O3, the different kinetics between densification diffusion and grain boundary network mobility leaves a kinetic window that can be utilized in the second-step sintering. Evidence indicates that low symmetry, ferroelectric structures still exist in nanograin BaTiO3 ceramics, and that saturation magnetization is the same in nanograin and coarse grain ferrite ceramics
    corecore