410 research outputs found
Learning Semantic Representations for the Phrase Translation Model
This paper presents a novel semantic-based phrase translation model. A pair
of source and target phrases are projected into continuous-valued vector
representations in a low-dimensional latent semantic space, where their
translation score is computed by the distance between the pair in this new
space. The projection is performed by a multi-layer neural network whose
weights are learned on parallel training data. The learning is aimed to
directly optimize the quality of end-to-end machine translation results.
Experimental evaluation has been performed on two Europarl translation tasks,
English-French and German-English. The results show that the new semantic-based
phrase translation model significantly improves the performance of a
state-of-the-art phrase-based statistical machine translation sys-tem, leading
to a gain of 0.7-1.0 BLEU points
A Deep Embedding Model for Co-occurrence Learning
Co-occurrence Data is a common and important information source in many
areas, such as the word co-occurrence in the sentences, friends co-occurrence
in social networks and products co-occurrence in commercial transaction data,
etc, which contains rich correlation and clustering information about the
items. In this paper, we study co-occurrence data using a general energy-based
probabilistic model, and we analyze three different categories of energy-based
model, namely, the , and models, which are able to capture
different levels of dependency in the co-occurrence data. We also discuss how
several typical existing models are related to these three types of energy
models, including the Fully Visible Boltzmann Machine (FVBM) (), Matrix
Factorization (), Log-BiLinear (LBL) models (), and the Restricted
Boltzmann Machine (RBM) model (). Then, we propose a Deep Embedding Model
(DEM) (an model) from the energy model in a \emph{principled} manner.
Furthermore, motivated by the observation that the partition function in the
energy model is intractable and the fact that the major objective of modeling
the co-occurrence data is to predict using the conditional probability, we
apply the \emph{maximum pseudo-likelihood} method to learn DEM. In consequence,
the developed model and its learning method naturally avoid the above
difficulties and can be easily used to compute the conditional probability in
prediction. Interestingly, our method is equivalent to learning a special
structured deep neural network using back-propagation and a special sampling
strategy, which makes it scalable on large-scale datasets. Finally, in the
experiments, we show that the DEM can achieve comparable or better results than
state-of-the-art methods on datasets across several application domains
BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems
We present a new algorithm that significantly improves the efficiency of
exploration for deep Q-learning agents in dialogue systems. Our agents explore
via Thompson sampling, drawing Monte Carlo samples from a Bayes-by-Backprop
neural network. Our algorithm learns much faster than common exploration
strategies such as -greedy, Boltzmann, bootstrapping, and
intrinsic-reward-based ones. Additionally, we show that spiking the replay
buffer with experiences from just a few successful episodes can make Q-learning
feasible when it might otherwise fail.Comment: 13 pages, 9 figure
- …