576 research outputs found

    Epithelial cell–derived secreted and transmembrane 1a signals to activated neutrophils during pneumococcal pneumonia

    Full text link
    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-kB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia

    Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia

    Get PDF
    Influenza and other respiratory viral infections are the most common type of acute respiratory infection. Viral infections predispose patients to secondary bacterial infections, which often have a more severe clinical course. The mechanisms underlying post-viral bacterial infections are complex, and include multifactorial processes mediated by interactions between viruses, bacteria, and the host immune system. Studies over the past 15 years have demonstrated that unique microbial communities reside on the mucosal surfaces of the gastrointestinal tract and the respiratory tract, which have both direct and indirect effects on host defense against viral infections. In addition, antiviral immune responses induced by acute respiratory infections such as influenza are associated with changes in microbial composition and function (β€œdysbiosis”) in the respiratory and gastrointestinal tract, which in turn may alter subsequent immune function against secondary bacterial infection or alter the dynamics of inter-microbial interactions, thereby enhancing the proliferation of potentially pathogenic bacterial species. In this review, we summarize the literature on the interactions between host microbial communities and host defense, and how influenza, and other acute respiratory viral infections disrupt these interactions, thereby contributing to the pathogenesis of secondary bacterial infections

    Comparison of TNFΞ± to Lipopolysaccharide as an Inflammagen to Characterize the Idiosyncratic Hepatotoxicity Potential of Drugs: Trovafloxacin as an Example

    Get PDF
    Idiosyncratic drug reactions (IDRs) are poorly understood, unpredictable, and not detected in preclinical studies. Although the cause of these reactions is likely multi-factorial, one hypothesis is that an underlying inflammatory state lowers the tolerance to a xenobiotic. Previously used in an inflammation IDR model, bacterial lipopolysaccharide (LPS) is heterogeneous in nature, making development of standardized testing protocols difficult. Here, the use of rat tumor necrosis factor-Ξ± (TNFΞ±) to replace LPS as an inflammatory stimulus was investigated. Sprague-Dawley rats were treated with separate preparations of LPS or TNFΞ±, and hepatic transcriptomic effects were compared. TNFΞ± showed enhanced consistency at the transcriptomic level compared to LPS. TNFΞ± and LPS regulated similar biochemical pathways, although LPS was associated with more robust inflammatory signaling than TNFΞ±. Rats were then codosed with TNFΞ± and trovafloxacin (TVX), an IDR-associated drug, and evaluated by liver histopathology, clinical chemistry, and gene expression analysis. TNFΞ±/TVX induced unique gene expression changes that clustered separately from TNFΞ±/levofloxacin, a drug not associated with IDRs. TNFΞ±/TVX cotreatment led to autoinduction of TNFΞ± resulting in potentiation of underlying gene expression stress signals. Comparison of TNFΞ±/TVX and LPS/TVX gene expression profiles revealed similarities in the regulation of biochemical pathways. In conclusion, TNFΞ± could be used in lieu of LPS as an inflammatory stimulus in this model of IDRs

    Single-Cell Characterization of Pulmonary Nodules Implicates Suppression of Immunosurveillance across Early Stages of Lung Adenocarcinoma

    Get PDF
    UNLABELLED: A greater understanding of molecular, cellular, and immunological changes during the early stages of lung adenocarcinoma development could improve diagnostic and therapeutic approaches in patients with pulmonary nodules at risk for lung cancer. To elucidate the immunopathogenesis of early lung tumorigenesis, we evaluated surgically resected pulmonary nodules representing the spectrum of early lung adenocarcinoma as well as associated normal lung tissues using single-cell RNA sequencing and validated the results by flow cytometry and multiplex immunofluorescence (MIF). Single-cell transcriptomics revealed a significant decrease in gene expression associated with cytolytic activities of tumor-infiltrating natural killer and natural killer T cells. This was accompanied by a reduction in effector T cells and an increase of CD4+ regulatory T cells (Treg) in subsolid nodules. An independent set of resected pulmonary nodules consisting of both adenocarcinomas and associated premalignant lesions corroborated the early increment of Tregs in premalignant lesions compared with the associated normal lung tissues by MIF. Gene expression analysis indicated that cancer-associated alveolar type 2 cells and fibroblasts may contribute to the deregulation of the extracellular matrix, potentially affecting immune infiltration in subsolid nodules through ligand-receptor interactions. These findings suggest that there is a suppression of immune surveillance across the spectrum of early-stage lung adenocarcinoma. SIGNIFICANCE: Analysis of a spectrum of subsolid pulmonary nodules by single-cell RNA sequencing provides insights into the immune regulation and cell-cell interactions in the tumor microenvironment during early lung tumor development

    Age- Matched Comparison of Children Hospitalized for 2009 Pandemic H1N1 Influenza with Those Hospitalized for Seasonal H1N1 and H3N2

    Get PDF
    BACKGROUND: A wide spectrum of clinical manifestation ranging from deaths to a mild course of disease has been reported in children infected with the 2009 pandemic H1N1 (pH1N1) influenza. METHODOLOGY/MAJOR FINDINGS: We conducted an age-matched control study comparing children hospitalized for pH1N1 with historic controls infected with seasonal H1N1 and H3N2 influenza to correct for the effect of age on disease susceptibility and clinical manifestations. We also compared children with pH1N1 to children concurrently admitted for seasonal influenza during the pandemic period to adjust for differences in health-seeking behavior during the pandemic or other potential bias associated with historic controls. There was no death or intensive care admission. Children with pH1N1 were more likely to have at least one risk condition for influenza, an underlying chronic pulmonary condition, more likely to have asthma exacerbation and to be treated with oseltamivir. There was no difference in other aspects of the clinical course or outcome. CONCLUSION: Disease manifestation of children hospitalized for pH1N1 infection was mild in our patient population

    Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis

    Get PDF
    Abstract Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis

    Bordetella pertussis Autotransporter Vag8 Binds Human C1 Esterase Inhibitor and Confers Serum Resistance

    Get PDF
    Bordetella pertussis employs numerous strategies to evade the immune system, including the ability to resist killing via complement. Previously we have shown that B. pertussis binds a complement regulatory protein, C1 esterase inhibitor (C1inh) to its surface in a Bvg-regulated manner (i.e. during its virulence phase), but the B. pertussis factor was not identified. Here we set out to identify the B. pertussis C1inh-binding factor. Using a serum overlay assay, we found that this factor migrates at approximately 100 kDa on an SDS-PAGE gel. To identify this factor, we isolated proteins of approximately 100 kDa from wild type strain BP338 and from BP347, an isogenic Bvg mutant that does not bind C1inh. Using mass spectrometry and bioinformatics, we identified the autotransporter protein Vag8 as the putative C1inh binding protein. To prove that Vag8 binds C1inh, vag8 was disrupted in two different B. pertussis strains, namely BP338 and 18–323, and the mutants were tested for their ability to bind C1inh in a surface-binding assay. Neither mutant strain was capable of binding C1inh, whereas a complemented strain successfully bound C1inh. In addition, the passenger domain of Vag8 was expressed and purified as a histidine-tagged fusion protein and tested for C1inh-binding in an ELISA assay. Whereas the purified Vag8 passenger bound C1inh, the passenger domain of BrkA (a related autotransporter protein) failed to do so. Finally, serum assays were conducted to compare wild type and vag8 mutants. We determined that vag8 mutants from both strains were more susceptible to killing compared to their isogenic wild type counterparts. In conclusion, we have discovered a novel role for the previously uncharacterized protein Vag8 in the immune evasion of B. pertussis. Vag8 binds C1inh to the surface of the bacterium and confers serum resistance

    Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae

    Get PDF
    Salicylic acid (SA)-induced defense responses are important factors during effector triggered immunity and microbe-associated molecular pattern (MAMP)-induced immunity in plants. This article presents evidence that a member of the Arabidopsis CBP60 gene family, CBP60g, contributes to MAMP-triggered SA accumulation. CBP60g is inducible by both pathogen and MAMP treatments. Pseudomonas syringae growth is enhanced in cbp60g mutants. Expression profiles of a cbp60g mutant after MAMP treatment are similar to those of sid2 and pad4, suggesting a defect in SA signaling. Accordingly, cbp60g mutants accumulate less SA when treated with the MAMP flg22 or a P. syringae hrcC strain that activates MAMP signaling. MAMP-induced production of reactive oxygen species and callose deposition are unaffected in cbp60g mutants. CBP60g is a calmodulin-binding protein with a calmodulin-binding domain located near the N-terminus. Calmodulin binding is dependent on Ca2+. Mutations in CBP60g that abolish calmodulin binding prevent complementation of the SA production and bacterial growth defects of cbp60g mutants, indicating that calmodulin binding is essential for the function of CBP60g in defense signaling. These studies show that CBP60g constitutes a Ca2+ link between MAMP recognition and SA accumulation that is important for resistance to P. syringae

    Mycobacterial PIMs Inhibit Host Inflammatory Responses through CD14-Dependent and CD14-Independent Mechanisms

    Get PDF
    Mycobacteria develop strategies to evade the host immune system. Among them, mycobacterial LAM or PIMs inhibit the expression of pro-inflammatory cytokines by activated macrophages. Here, using synthetic PIM analogues, we analyzed the mode of action of PIM anti-inflammatory effects. Synthetic PIM1 isomer and PIM2 mimetic potently inhibit TNF and IL-12 p40 expression induced by TLR2 or TLR4 pathways, but not by TLR9, in murine macrophages. We show inhibition of LPS binding to TLR4/MD2/CD14 expressing HEK cells by PIM1 and PIM2 analogues. More specifically, the binding of LPS to CD14 was inhibited by PIM1 and PIM2 analogues. CD14 was dispensable for PIM1 and PIM2 analogues functional inhibition of TLR2 agonists induced TNF, as shown in CD14-deficient macrophages. The use of rough-LPS, that stimulates TLR4 pathway independently of CD14, allowed to discriminate between CD14-dependent and CD14-independent anti-inflammatory effects of PIMs on LPS-induced macrophage responses. PIM1 and PIM2 analogues inhibited LPS-induced TNF release by a CD14-dependent pathway, while IL-12 p40 inhibition was CD14-independent, suggesting that PIMs have multifold inhibitory effects on the TLR4 signalling pathway

    The Effects of Age on Inflammatory and Coagulation-Fibrinolysis Response in Patients Hospitalized for Pneumonia

    Get PDF
    Objective: To determine whether inflammatory and hemostasis response in patients hospitalized for pneumonia varies by age and whether these differences explain higher mortality in the elderly. Methods: In an observational cohort of subjects with community-acquired pneumonia (CAP) recruited from emergency departments (ED) in 28 hospitals, we divided subjects into 5 age groups (85% subjects, older subjects had modestly increased hemostasis markers and IL-6 levels (p,0.01). Conclusions: Modest age-related increases in coagulation response occur during hospitalization for CAP; however these differences do not explain the large differences in mortality. Despite clinical recovery, immune resolution may be delayed in older adults at discharge. Β© 2010 Kale et al
    • …
    corecore