37 research outputs found

    CMB spectral distortions from black holes formed by vacuum bubbles

    Get PDF
    Vacuum bubbles may nucleate and expand during the cosmic inflation. When inflation ends, the bubbles run into the ambient plasma, producing strong shocks followed by underdensity waves, which propagate outwards. The bubbles themselves eventually form black holes with a wide distribution of masses. It has been recently suggested that such black holes may account for LIGO observations and may provide seeds for supermassive black holes observed at galactic centers. They may also provide a significant part or even the whole of the dark matter. We estimate the spectral μ\mu-distortion of the CMB induced by expanding shocks and underdensities. The predicted distortions averaged over the sky are well below the current bounds, but localized peaks due to the largest black holes impose constraints on the model parameters.Comment: 27 pages, 6 figures; v2: Added a brief discussion of PBH effect on structure formatio

    Simulating cosmic string loop captured by a rotating black hole

    Full text link
    We study the dynamics of a cosmic string loop captured by a rotating black hole, ignoring string reconnections. A loop is numerically evolved in Kerr spacetime, with the result that it turns into one or more growing or contracting double-lines rotating around the black hole in the equatorial plane. This is in good agreement with the approximate analytical treatment of the problem investigated by Xing et al., who studied the evolution of the auxiliary curve associated with the string loop. We confirm that the auxiliary curve deformation can indeed describe the string motion in realistic physical scenarios to a reasonable accuracy, and can thus be used to further study other phenomena such as superradiance and reconnections of the captured loop.Comment: 28 pages, 10 figure

    Primordial black hole and wormhole formation by domain walls

    Get PDF
    In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ``supercritical'' case, a wormhole throat develops, connecting the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2

    Implications of GWTC-3 on primordial black holes from vacuum bubbles

    Full text link
    The population of black holes inferred from the detection of gravitational waves by the LIGO-Virgo-KAGRA collaboration has revealed interesting features in the properties of black holes in the universe. We analyze the GWTC-3 dataset assuming the detected black holes in each event had an either astrophysical or primordial origin. In particular, we consider astrophysical black holes described by the fiducial \textsc{Power Law + Peak} distribution and primordial black holes whose mass function obeys a broken power law. These primordial black holes can be generated by vacuum bubbles that nucleate during inflation. We find that astrophysical black holes dominate the events with mass less than 30M\sim 30M_\odot, whereas primordial black holes are responsible for the massive end, and also for the peak at 30M\sim 30M_\odot in the mass distribution. More than half of the observed events could come from primordial black hole mergers. We also discuss the implications on the primordial black hole formation mechanism and the underlying inflationary model.Comment: The ABH model has been update

    Can Light Dark Matter Solve the Core-Cusp Problem?

    Get PDF
    Recently there has been much interest in light dark matter, especially ultra-light axions, as they may provide a solution to the core-cusp problem at the center of galaxies. Since very light bosons can have a de Broglie wavelength that is of astrophysical size, they can smooth out the centers of galaxies to produce a core, as opposed to vanilla dark matter models, and so it has been suggested that this solves the core-cusp problem. In this work, we critically examine this claim. While an ultra-light particle will indeed lead to a core, we examine whether the relationship between the density of the core and its radius matches the data over a range of galaxies. We first review data that shows the core density of a galaxy ρc\rho_c varies as a function of the core radius RcR_c as ρc1/Rcβ\rho_c\propto1/R_c^\beta with β1\beta\approx1. We then compare this to theoretical models. We examine a large class of light scalar dark matter models, governed by some potential VV. For simplicity, we take the scalar to be complex with a global U(1)U(1) symmetry in order to readily organize solutions by a conserved particle number. However, we expect our central conclusions to persist even for a real scalar, and furthermore, a complex scalar matches the behavior of a real scalar in the non-relativistic limit, which is the standard regime of interest. For any potential VV, we find the relationship between ρc\rho_c and RcR_c for ground state solutions is always in one of the following regimes: (i) β1\beta\gg1, or (ii) β1\beta\ll1, or (iii) unstable, and so it never matches the data. We also find similar conclusions for virialized dark matter, more general scalar field theories, degenerate fermion dark matter, superfluid dark matter, and general polytropes. We conclude that the solution to the core-cusp problem is more likely due to either complicated baryonic effects or some other type of dark matter interactions.Comment: 10 pages in double column format, 3 figures. V2: Updated to resemble version published in PR

    Searching for gravitational wave burst in PTA data with piecewise linear functions

    Full text link
    Transient gravitational waves (aka gravitational wave bursts) within the nanohertz frequency band could be generated by a variety of astrophysical phenomena such as the encounter of supermassive black holes, the kinks or cusps in cosmic strings, or other as-yet-unknown physical processes. Radio-pulses emitted from millisecond pulsars could be perturbed by passing gravitational waves, hence the correlation of the perturbations in a pulsar timing array can be used to detect and characterize burst signals with a duration of O(1-10)\mathcal{O}(1\text{-}10) years. We propose a fully Bayesian framework for the analysis of the pulsar timing array data, where the burst waveform is generically modeled by piecewise straight lines, and the waveform parameters in the likelihood can be integrated out analytically. As a result, with merely three parameters (in addition to those describing the pulsars' intrinsic and background noise), one is able to efficiently search for the existence and the sky location of {a burst signal}. If a signal is present, the posterior of the waveform can be found without further Bayesian inference. We demonstrate this model by analyzing simulated data sets containing a stochastic gravitational wave background {and a burst signal generated by the parabolic encounter of two supermassive black holes.Comment: 13 pages, 10 figure
    corecore