17 research outputs found

    Constitutive and Inducible Expression of the rRNA Methylase Gene erm(B) in Campylobacter

    Get PDF
    Macrolides are the antimicrobials of choice for treating human campylobacteriosis. The recent emergence of erm(B) in Campylobacter bacteria threatens the utility of this class of antibiotics. Here we report the constitutive and inducible expression of erm(B) in Campylobacter isolates derived from diarrheal patients and food-producing animals. Constitutive expression of erm(B) was associated with insertion and deletion in the regulatory region of the gene, providing the first documentation of the differential expression of erm(B) in Campylobacter bacteria

    Aflatoxin B1 Degradation and Detoxification by Escherichia coli CG1061 Isolated From Chicken Cecum

    Get PDF
    Aflatoxin B1 (AFB1) is one of the most hazardous mycotoxins contamination in food and feed products, which leads to hepatocellular carcinoma in humans and animals. In the present study, we isolated and characterized an AFB1 degrading bacteria CG1061 from chicken cecum, exhibited an 93.7% AFB1 degradation rate by HPLC. 16S rRNA gene sequence analysis and a multiplex PCR experiment demonstrated that CG1061 was a non-pathogenic Escherichia coli. The culture supernatant of E. coli CG1061 showed an 61.8% degradation rate, whereas the degradation rates produced by the intracellular extracts was only 17.6%, indicating that the active component was constitutively secreted into the extracellular space. The degradation rate decreased from 61.8 to 37.5% when the culture supernatant was treated with 1 mg/mL proteinase K, and remained 51.3% when that treated with 100°C for 20 min. We postulated that AFB1 degradation was mediated by heat-resistant proteins. The content of AFB1 decreased rapidly when it was incubated with the culture supernatant during the first 24 h. The optimal incubation pH and temperature were pH 8.5 and 55°C respectively. According to the UPLC Q-TOF MS analysis, AFB1 was bio-transformed to the product C16H14O5 and other metabolites. Based on the results of in vitro experiments on chicken hepatocellular carcinoma (LMH) cells and in vivo experiments on mice, we confirmed that CG1061-degraded AFB1 are less toxic than the standard AFB1. E. coli CG1061 isolated from healthy chicken cerum is more likely to colonize the animal gut, which might be an excellent candidate for the detoxification of AFB1 in food and feed industry

    Identification of a Novel Genomic Island Conferring Resistance to Multiple Aminoglycoside Antibiotics in Campylobacter coli

    Get PDF
    Historically, the incidence of gentamicin resistance in Campylobacter has been very low, but recent studies reported a high prevalence of gentamicin-resistant Campylobacter isolated from food-producing animals in China. The reason for the high prevalence was unknown and was addressed in this study. PCR screening identified aminoglycoside resistance genes aphA-3 and aphA-7 and the aadE–sat4–aphA-3 cluster among 41 Campylobacter isolates from broiler chickens. Importantly, a novel genomic island carrying multiple aminoglycoside resistance genes was identified in 26 aminoglycoside resistant Campylobacter coli strains. Sequence analysis revealed that the genomic island was inserted between cadF and COO1582 on the C. coli chromosome and consists of 14 open reading frames (ORFs), including 6 genes (the aadE–sat4–aphA-3 cluster, aacA-aphD, aac, and aadE) encoding aminoglycoside-modifying enzymes. Analysis by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing indicated that the C. coli isolates carrying this unique genomic island were clonal, and the clone of PFGE subtype III and sequence type (ST) 1625 was particularly predominant among the C. coli isolates examined, suggesting that clonal expansion may be involved in dissemination of this resistance island. Additionally, we were able to transfer this genomic island from C. coli to a Campylobacter jejuni strain using natural transformation under laboratory conditions, and the transfer resulted in a drastic increase in aminoglycoside resistance in the recipient strain. These findings identify a previously undescribed genomic island that confers resistance to multiple aminoglycoside antibiotics. Since aminoglycoside antibiotics are used for treating occasional systemic infections caused by Campylobacter, the emergence and spread of this antibiotic resistance genomic island represent a potential concern for public health

    Emergence of Multidrug-Resistant Campylobacter Species Isolates with a Horizontally Acquired rRNA Methylase

    Get PDF
    Antibiotic-resistant Campylobacter constitutes a serious threat to public health, and resistance to macrolides is of particular concern, as this class of antibiotics is the drug of choice for clinical therapy of campylobacteriosis. Very recently, a horizontally transferrable macrolide resistance mediated by the rRNA methylase gene erm(B) was reported in a Campylobacter coli isolate, but little is known about the dissemination of erm(B) among Campylobacter isolates and the association of erm(B)-carrying isolates with clinical disease. To address this question and facilitate the control of antibiotic-resistant Campylobacter, we determined the distribution of erm(B) in 1,554 C. coli and Campylobacter jejuni isolates derived from food-producing animals and clinically confirmed human diarrheal cases. The results revealed that 58 of the examined isolates harbored erm(B) and exhibited high-level resistance to macrolides, and most were recent isolates, derived in 2011-2012. In addition, the erm(B)-positive isolates were all resistant to fluoroquinolones, another clinically important antibiotic used for treating campylobacteriosis. The erm(B) gene is found to be associated with chromosomal multidrug resistance genomic islands (MDRGIs) of Gram-positive origin or with plasmids of various sizes. All MDRGIs were transferrable to macrolide-susceptible C. jejuni by natural transformation under laboratory conditions. Molecular typing of the erm(B)-carrying isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified diverse genotypes and outbreak-associated diarrheal isolates. Molecular typing also suggested zoonotic transmission of erm(B)-positive Campylobacter. These findings reveal an emerging and alarming trend of dissemination of erm(B) and MDRGIs in Campylobacter and underscore the need for heightened efforts to control their further spread

    Detection and Genetic Environment of Pleuromutilin-Lincosamide-Streptogramin A Resistance Genes in Staphylococci Isolated from Pets

    Get PDF
    Increasing emergence of staphylococci resistant to pleuromutilins, lincosamides, and streptogramin A (PLSA) and isolated from humans and pets is a growing public health concern worldwide. Currently, there was only one published study regarding one of the PLSA genes, vga(A) detected in staphylococci isolated from cat. In this study, eleven pleuromutilin-resistant staphylococci from pets and two from their owners were isolated and further characterized for their antimicrobial susceptibilities, plasmid profiles, genotypes, and genetic context of the PLSA resistance genes. The gene sal(A) identified in 11 staphylococcal isolates was found for the first time in Staphylococcus haemolyticus, Staphylococcus epidermidis, and Staphylococcus xylosus. Moreover, these 11 isolates shared the identical regions flanking the sal(A) gene located in the chromosomal DNA. Two S. haemolyticus isolates from a cat and its owner carried similar vga(A)LC plasmids and displayed indistinguishable PFGE patterns. A novel chromosomal multidrug resistance genomic island (MDRGI) containing 13 resistance genes, including lsa(E), was firstly identified in S. epidermidis. In addition, vga(A)LC, sal(A), and lsa(E) were for the first time identified in staphylococcal isolates originating from pet animals. The plasmids, chromosomal DNA region, and MDRGI associated with the PLSA resistance genes vga(A), vga(A)LC, sal(A), and lsa(E) are present in staphylococci isolated from pets and humans and present significant challenges for the clinical management of infections by limiting therapeutic options

    Cereulide Exposure Caused Cytopathogenic Damages of Liver and Kidney in Mice

    No full text
    Cereulide is one of the main food-borne toxins for vomiting synthesized by Bacillus cereus, and it widely contaminates meat, eggs, milk, and starchy foods. However, the toxicological effects and mechanisms of the long-time exposure of cereulide in vivo remain unknown. In this study, oral administration of 50 and 200 μg/kg body weight cereulide in the mice for 28 days caused oxidative stress in liver and kidney tissues and induce abnormal expression of inflammatory factors. In pathogenesis, cereulide exposure activated endoplasmic reticulum stress (ER stress) via the pathways of inositol-requiring enzyme 1α (IRE1α)/Xbox binding protein (XBP1) and PRKR-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (eIF2α), and consequently led to the apoptosis and tissue damages in mouse liver and kidney. In vitro, we confirmed that the accumulation of reactive oxygen species (ROS) caused by cereulide is the main factor leading to ER stress in HepaRG and HEK293T cells. Supplementation of sodium butyrate (NaB) inhibited the activations of IRE1α/XBP1 and PERK/eIF2α pathways caused by cereulide exposure in mice, and reduced the cell apoptosis in liver and kidney. In conclusion, this study provides a new insight in understanding the toxicological mechanism and prevention of cereulide exposure

    New Insights into the Virulence Traits and Antibiotic Resistance of Enterococci Isolated from Diverse Probiotic Products

    No full text
    The GRAS (generally recognized as safe) status of Enterococcus has not yet been authenticated, but enterococci, as probiotics, have been increasingly applied in human healthcare and animal husbandry, for instance as a dietary supplement, feed additive, or growth promotor. The food chain is the important route for introducing enterococci into the human gut. The pathogenicity of Enterococcus from probiotic products requires investigation. In the study, 110 commercial probiotic products used for human, animal, aquaculture, and plants were examined, among which 36 enterococci were identified, including 31 from Enterococcus faecium, 2 from E. faecalis, 2 from E. casseliflavus, and 1 from E. gallinarum. Strikingly, 28 of the 36 enterococci isolated from probiotics here did not mention the presence of Enterococcus in the labeled ingredients, and no Enterococcus isolates were found from 5 animal probiotics that were labeled with the genus. In total, 35 of the 110 products exhibited hemolysis, including 5 (10.6%) human probiotics, 14 (41.2%) animal probiotics, 8 (57.1%) aquaculture probiotics, and 8 (53.3%) plant probiotics. The detection rates of virulence factors associated with adhesion, antiphagocytosis, exoenzyme, biofilm, and other putative virulence markers (PVM) in 36 enterococci were 94.4%, 91.7%, 5.6%, 94.4% and 8.3%. Twenty-six of the 36 isolated strains exhibited biofilm formation ability, where 25 strains (69.4%) and one (2.8%) were strong and weak biofilm producers, respectively. We analyzed the resistance rates against erythromycin (97%), vancomycin and ciprofloxacin (8%), tetracycline (3%), and high-level aminoglycosides (0%), respectively. High detection rates of msrC/lsaA (86%) and aac(6′)-Ii (86%) were observed, followed by vanC (8%), tetM (3%). The Tn5801-tetM-like integrative conjugative element (ICE) was identified in E. gallinarum, exhibiting resistance to tetracycline (64 μg/mL). Seven probiotic E. faecalis and E. faecium, as active ingredients in human probiotics, shared the same STs (sequence types) and were distinct from the STs of other contaminated or mislabeled enterococci, indicating that two particular STs belonged to native probiotic isolates. These findings advocate appropriate assessments of enterococci when used in probiotics

    Constitutive and Inducible Expression of the rRNA Methylase Gene erm(B) in Campylobacter

    Get PDF
    Macrolides are the antimicrobials of choice for treating human campylobacteriosis. The recent emergence of erm(B) in Campylobacter bacteria threatens the utility of this class of antibiotics. Here we report the constitutive and inducible expression of erm(B) in Campylobacter isolates derived from diarrheal patients and food-producing animals. Constitutive expression of erm(B) was associated with insertion and deletion in the regulatory region of the gene, providing the first documentation of the differential expression of erm(B) in Campylobacter bacteria.This article is published as Deng, Fengru, Jianzhong Shen, Maojun Zhang, Congming Wu, Qijing Zhang, and Yang Wang. "Constitutive and inducible expression of the rRNA methylase gene erm (B) in Campylobacter." Antimicrobial agents and chemotherapy 59, no. 10 (2015): 6661-6664. doi: 10.1128/AAC.01103-15. Posted with permission.</p

    Emergence of Multidrug-Resistant Campylobacter Species Isolates with a Horizontally Acquired rRNA Methylase

    No full text
    Antibiotic-resistant Campylobacter constitutes a serious threat to public health, and resistance to macrolides is of particular concern, as this class of antibiotics is the drug of choice for clinical therapy of campylobacteriosis. Very recently, a horizontally transferrable macrolide resistance mediated by the rRNA methylase gene erm(B) was reported in a Campylobacter coli isolate, but little is known about the dissemination of erm(B) among Campylobacter isolates and the association of erm(B)-carrying isolates with clinical disease. To address this question and facilitate the control of antibiotic-resistant Campylobacter, we determined the distribution of erm(B) in 1,554 C. coli and Campylobacter jejuni isolates derived from food-producing animals and clinically confirmed human diarrheal cases. The results revealed that 58 of the examined isolates harbored erm(B) and exhibited high-level resistance to macrolides, and most were recent isolates, derived in 2011-2012. In addition, the erm(B)-positive isolates were all resistant to fluoroquinolones, another clinically important antibiotic used for treating campylobacteriosis. The erm(B) gene is found to be associated with chromosomal multidrug resistance genomic islands (MDRGIs) of Gram-positive origin or with plasmids of various sizes. All MDRGIs were transferrable to macrolide-susceptible C. jejuni by natural transformation under laboratory conditions. Molecular typing of the erm(B)-carrying isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified diverse genotypes and outbreak-associated diarrheal isolates. Molecular typing also suggested zoonotic transmission of erm(B)-positive Campylobacter. These findings reveal an emerging and alarming trend of dissemination of erm(B) and MDRGIs in Campylobacter and underscore the need for heightened efforts to control their further spread.This article is published as Wang, Yang, Maojun Zhang, Fengru Deng, Zhangqi Shen, Congming Wu, Jianzhong Zhang, Qijing Zhang, and Jianzhong Shen. "Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase." Antimicrobial agents and chemotherapy 58, no. 9 (2014): 5405-5412. doi: 10.1128/AAC.03039-14. Posted with permission.</p

    Identification of a Novel Genomic Island Conferring Resistance to Multiple Aminoglycoside Antibiotics in Campylobacter coli

    No full text
    Historically, the incidence of gentamicin resistance in Campylobacter has been very low, but recent studies reported a high prevalence of gentamicin-resistant Campylobacter isolated from food-producing animals in China. The reason for the high prevalence was unknown and was addressed in this study. PCR screening identified aminoglycoside resistance genes aphA-3 and aphA-7 and the aadE–sat4–aphA-3 cluster among 41 Campylobacter isolates from broiler chickens. Importantly, a novel genomic island carrying multiple aminoglycoside resistance genes was identified in 26 aminoglycoside resistant Campylobacter coli strains. Sequence analysis revealed that the genomic island was inserted between cadF and COO1582 on the C. coli chromosome and consists of 14 open reading frames (ORFs), including 6 genes (the aadE–sat4–aphA-3 cluster, aacA-aphD, aac, and aadE) encoding aminoglycoside-modifying enzymes. Analysis by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing indicated that the C. coli isolates carrying this unique genomic island were clonal, and the clone of PFGE subtype III and sequence type (ST) 1625 was particularly predominant among the C. coli isolates examined, suggesting that clonal expansion may be involved in dissemination of this resistance island. Additionally, we were able to transfer this genomic island from C. coli to a Campylobacter jejuni strain using natural transformation under laboratory conditions, and the transfer resulted in a drastic increase in aminoglycoside resistance in the recipient strain. These findings identify a previously undescribed genomic island that confers resistance to multiple aminoglycoside antibiotics. Since aminoglycoside antibiotics are used for treating occasional systemic infections caused by Campylobacter, the emergence and spread of this antibiotic resistance genomic island represent a potential concern for public health.This article is published as Qin, Shangshang, Yang Wang, Qijing Zhang, Xia Chen, Zhangqi Shen, Fengru Deng, Congming Wu, and Jianzhong Shen. "Identification of a novel genomic island conferring resistance to multiple aminoglycoside antibiotics in Campylobacter coli." Antimicrobial agents and chemotherapy 56, no. 10 (2012): 5332-5339. doi: 10.1128/AAC.00809-12. Posted with permission.</p
    corecore