26 research outputs found

    Roles of Phosphorus Sources in Microbial Community Assembly for the Removal of Organic Matters and Ammonia in Activated Sludge

    Get PDF
    Various phosphorus sources are utilized by microbes in WWTPs, eventually affecting microbial assembly and functions. This study identified the effects of phosphorus source on microbial communities and functions in the activated sludge. By cultivation with 59 phosphorus sources, including inorganic phosphates (IP), nucleoside-monophosphates (NMP), cyclic-nucleoside-monophosphates (cNMP), and other organophosphates (OP), we evaluated the change in removal efficiencies of total organic carbon (TOC) and ammonia, microbial biomass, alkaline phosphatase (AKP) activity, microbial community structure, and AKP-associated genes. TOC and ammonia removal efficiency was highest in IP (64.8%) and cNMP (52.3%) treatments. Microbial community structure changed significantly across phosphorus sources that IP and cNMP encouraged Enterobacter and Aeromonas, respectively. The abundance of phoA and phoU genes was higher in IP treatments, whereas phoD and phoX genes dominated OP treatments. Our findings suggested that the performance of WWTPs was dependent on phosphorus sources and provided new insights into effective WWTP management

    Profiling Mechanisms of Alkane Hydroxylase Activity In Vivo Using the Diagnostic Substrate Norcarane

    Get PDF
    SummaryMechanistically informative chemical probes are used to characterize the activity of functional alkane hydroxylases in whole cells. Norcarane is a substrate used to reveal the lifetime of radical intermediates formed during alkane oxidation. Results from oxidations of this probe with organisms that contain the two most prevalent medium-chain-length alkane-oxidizing metalloenzymes, alkane ω-monooxygenase (AlkB) and cytochrome P450 (CYP), are reported. The results—radical lifetimes of 1–7 ns for AlkB and less than 100 ps for CYP—indicate that these two classes of enzymes are mechanistically distinguishable and that whole-cell mechanistic assays can identify the active hydroxylase. The oxidation of norcarane by several recently isolated strains (Hydrocarboniphaga effusa AP103, rJ4, and rJ5, whose alkane-oxidizing enzymes have not yet been identified) is also reported. Radical lifetimes of 1–3 ns are observed, consistent with these organisms containing an AlkB-like enzyme and inconsistent with their employing a CYP-like enzyme for growth on hydrocarbons

    Motion Estimation of Non-Cooperative Space Objects Based on Monocular Sequence Images

    No full text
    The motion estimation of non-cooperative space objects is an important prerequisite for successfully completing on-orbit servicing, debris removing and asteroid exploration missions. The motion estimation of non-cooperative space objects is a challenging task because of the lack of prior information about the object in unknown scenarios. In this paper, a motion estimation method of non-cooperative space objects for autonomous navigation based on a monocular sequence of images is proposed. The rotational attitude estimation of the non-cooperative space object is realized by matching the feature points of adjacent frame images, and the conditions required for translational estimation are discussed. This method has small calculation costs and runs stably, which meets the requirements of real-time computation on-board. As a result, this method implements the estimation of the complete unknown information of the object, including the attitude quaternion and angular velocity. Numerical simulations and results verify the effectiveness of the proposed method

    Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle

    No full text
    Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications

    Motion Estimation of Non-Cooperative Space Objects Based on Monocular Sequence Images

    No full text
    The motion estimation of non-cooperative space objects is an important prerequisite for successfully completing on-orbit servicing, debris removing and asteroid exploration missions. The motion estimation of non-cooperative space objects is a challenging task because of the lack of prior information about the object in unknown scenarios. In this paper, a motion estimation method of non-cooperative space objects for autonomous navigation based on a monocular sequence of images is proposed. The rotational attitude estimation of the non-cooperative space object is realized by matching the feature points of adjacent frame images, and the conditions required for translational estimation are discussed. This method has small calculation costs and runs stably, which meets the requirements of real-time computation on-board. As a result, this method implements the estimation of the complete unknown information of the object, including the attitude quaternion and angular velocity. Numerical simulations and results verify the effectiveness of the proposed method

    Monitoring the Activated Sludge Activities Affected by Industrial Toxins via an Early-Warning System Based on the Relative Oxygen Uptake Rate (ROUR) Index

    No full text
    Shock load from industrial wastewater is known to harm the microbial activities of the activated sludge in wastewater treatment plants (WWTPs) and disturb their performance. This study developed a system monitoring the activated sludge activities based on the relative oxygen uptake rate (ROUR) and explored the influential factors with wastewater and the activated sludge samples collected from a typical WWTP in the Taihu Lake of southern Jiangsu province, China. The ROUR was affected by the concentration of toxic substances, mixed liquid suspended solids (MLSS), hydraulic retention time (HRT) and pH. Higher toxin contents significantly decreased the ROUR and the EC50 value of Zn2+, Ni2+, Cr(VI), Cu2+, and Cd2+ was 13.40, 15.54, 97.56, 12.01, and 14.65 mg/L, respectively. The ROUR declined with the increasing HRT and MLSS above 2000 mg/L had buffering capacities for the impacts of toxic substances to some extent. The ROUR remained stable within a broad range pH (6–10), covering most of the operational pH in WWTPs and behaving as an appropriate indicator for monitoring the shock load. A toxicity model assessing and predicting the ROUR was developed and fitted well with experimental data. Coupling the ROUR monitoring system and toxicity model, an online early-warning system was assembled and successfully used for predicting the toxicity of different potential toxic metals. This study provides a new universal toxicity model and an online early-warning system for monitoring the shock load from industrial wastewater, which is useful for improving the performance of WWTPs

    Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced Subsurface Remediation

    No full text
    Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate. C<sub>12</sub>-MADS (sodium dodecyl diphenyl ether disulfonate, a representative divalent anionic surfactant) stands out as the most compatible surfactant. Batch treatability study with coal tar, an example of challenging scenarios for traditional ISCO, was then conducted. The results show that C<sub>12</sub>-MADS can significantly enhance not only the oxidation of polyaromatic hydrocarbons contained in coal tar but also oxidant utilization efficiency, indicating the potential of the proposed coupling process for the treatment of organic contaminants with low aqueous availability

    Biological soil crust succession in deserts through a 59-year-long case study in China: How induced biological soil crust strategy accelerates desertification reversal from decades to years

    No full text
    The regeneration of induced biological soil crusts (IBSCs) is regarded as an effective strategy for combating desertification. Three types of BSCs, namely, cyanobacterial, lichen and moss, are well-accepted as the main succession phases and are hypothesized to represent a continuous process. Herein, natural BSCs (NBSCs) and IBSCs with accurate ages from a 59-year-long field study were investigated to understand the entire BSC succession process. Shifts in nutrient levels, microbial composition and ecological functions suggested that cyanobacterial inoculation successfully accelerated BSC succession from decades to years by promoting the microbial multifunctions related to carbon and nitrogen fixation. The four state transitions of the BSC community accompanied by the turn-over of carbon and nitrogen fixators provide clues to the factors restricting the recovery process and climax of arid ecosystems. This study provides the first description of the continuous BSC succession, comprehensively discusses the mechanisms of BSC formation and succession and provides important guides for selection of strategies for the engineering reversals of desertification
    corecore