25 research outputs found

    Immune complex glomerulonephritis in a patient with myelodysplastic syndrome with ring sideroblasts treated with luspatercept

    No full text
    Myelodysplastic syndromes (MDS) are a group of clonal myeloid disorders distinguished by dysplastic bone marrow and peripheral blood cells, ineffective hematopoiesis, and an increased risk of developing acute myeloid leukemia (AML). MDS with ring sideroblasts (MDS-RS) is a favorable outcome subtype with a lower frequency of AML transformation. The FDA recently approved luspatercept for the treatment of patients with very-low-, low-, and intermediate-risk MDS-RS who have failed to correct anemia with an erythropoiesis-stimulating agent (ESA) and require two units of red blood cells over an eight-week period. This drug's pharmacology is based on the critical role of the transforming growth factor-beta (TGF-beta) pathway in regulating erythropoiesis. In this case report, we describe for the first time an acute kidney injury caused by membranoproliferative glomerulonephritis (MPGN) in a patient with MDS-RS who was treated with luspatercept. We propose that a multi-hit hypothesis could explain the immunopathogenesis. A first unknown hit may stimulate IgA immune complex production, whereas luspatercept administration acts as a second hit, causing Smad1-5-8 phosphorylation. This intriguing case report on immune-complex-mediated proliferative glomerulonephritis following luspatercept treatment generates hypotheses and stimulates further research in this area

    Next-generation protein analysis in the pathology department

    No full text
    Traditionally, immunohistochemistry (IHC) is used by pathologists to localise specific proteins or peptides in tissue slides. In the era of personalised medicine, however, molecular tissue analysis becomes indispensable for correct diagnosis, prognosis and therapeutic decision, not only on the DNA or mRNA level but also on the protein level. Combining molecular information with imaging presents many advantages. Therefore, matrix-assisted laser desorption/ionisation imaging mass spectrometry (MALDI IMS) is a promising technique to be added to the armamentarium of the pathologist. Here, we focus on the workflow, advantages and drawbacks of both MALDI IMS and IHC. We also briefly discuss a few other protein imaging modalities and give examples of applications

    Plasma donor-derived cell-free DNA kinetics after kidney transplantation using a single tube multiplex PCR assay.

    Get PDF
    BackgroundAfter transplantation, cell-free DNA derived from the donor organ (ddcfDNA) can be detected in the recipient's circulation. We aimed to quantify ddcfDNA levels in plasma of kidney transplant recipients thereby investigating the kinetics of this biomarker after transplantation and determining biological variables that influence ddcfDNA kinetics in stable and non-stable patients.Materials and methodsFrom 107 kidney transplant recipients, plasma samples were collected longitudinally after transplantation (day 1-3 months) within a multicenter set-up. Cell-free DNA from the donor was quantified in plasma as a fraction of the total cell-free DNA by next generation sequencing using a targeted, multiplex PCR-based method for the analysis of single nucleotide polymorphisms. A subgroup of stable renal transplant recipients was identified to determine a ddcfDNA threshold value.ResultsIn stable transplant recipients, plasma ddcfDNA% decreased to a mean (SD) ddcfDNA% of 0.46% (± 0.21%) which was reached 9.85 (± 5.6) days after transplantation. A ddcfDNA threshold value of 0.88% (mean + 2SD) was determined in kidney transplant recipients. Recipients that did not reach this threshold ddcfDNA value within 10 days after transplantation showed a higher ddcfDNA% on the first day after transplantation and demonstrated a higher individual baseline ddcfDNA%.ConclusionIn conclusion, plasma ddcfDNA fractions decreased exponentially within 10 days after transplantation to a ddcfDNA threshold value of 0.88% or less. To investigate the role of ddcfDNA for rejection monitoring of the graft, future research is needed to determine causes of ddcfDNA% increases above this threshold value

    Wolf in sheep's clothing : primary lung cancer mimicking benign entities

    Get PDF
    Lung cancer is the most common cancer worldwide. On imaging, it typically presents as mass or nodule. Recognition of these typical cases is often straightforward, whereas diagnosis of uncommon manifestations of primary lung cancer is far more challenging. Lung cancer can mimic a variety of benign entities, including pneumonia, lung abscess, postinfectious scarring, atelectasis, a mediastinal mass, emphysema and granulomatous diseases. Correlation with previous history, clinical and biochemical parameters is necessary in the assessment of these cases, but often aspecific and inconclusive. Whereas F-18-fluorodeoxyglucose (F-18-FDG) Positron Emission Tomography is the cornerstone in staging of lung cancer, its role in diagnosis of these uncommon manifestations is less straightforward since benign entities can present with increased F-18-FDG-uptake and, on the other hand, a number of these uncommon lung cancer manifestations do not exhibit increased uptake. Chest Computed Tomography (CT) is the imaging modality of choice for both lesion detection and characterization. In this pictorial review we present the wide imaging spectrum of CT-findings as well as radiologic-pathologic correlation of these uncommon lung cancer manifestations. Knowledge of the many faces of lung cancer is crucial for early diagnosis and subsequent treatment. A multidisciplinary approach in these cases is mandatory

    Absence of BCL-2 expression identifies a subgroup of AML with distinct phenotypic, molecular, and clinical characteristics

    Get PDF
    Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the rapid and uncontrolled clonal growth of myeloid lineage cells in the bone marrow. The advent of oral, selective inhibitors of the B-cell leukemia/lymphoma-2 (BCL-2) apoptosis pathway, such as venetoclax, will likely induce a paradigm shift in the treatment of AML. However, the high cost of this treatment and the risk of additive toxicity when used in combination with standard chemotherapy represent limitations to its use and underscore the need to identify which patients are most-and least-likely to benefit from incorporation of venetoclax into the treatment regimen. Bone marrow specimens from 93 newly diagnosed AML patients were collected in this study and evaluated for BCL-2 protein expression by immunohistochemistry. Using this low-cost, easily, and readily applicable analysis method, we found that 1 in 5 AML patients can be considered as BCL-2(-). In addition to a lower bone marrow blast percentage, this group exhibited a favorable molecular profile characterized by lower WT1 expression and underrepresentation of FLT3 mutations. As compared to their BCL-2(+) counterparts, the absence of BCL-2 expression was associated with a favorable response to standard chemotherapy and overall survival, thus potentially precluding the necessity for venetoclax add-on
    corecore