47 research outputs found

    Central administration of dipeptides, beta-alanyl-BCAAs, induces hyperactivity in chicks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carnosine (β-alanyl-L-histidine) is a putative neurotransmitter and has a possible role in neuron-glia cell interactions. Previously, we reported that carnosine induced hyperactivity in chicks when intracerebroventricularly (i.c.v.) administered. In the present study, we focused on other β-alanyl dipeptides to determine if they have novel functions.</p> <p>Results</p> <p>In Experiment 1, i.c.v. injection of β-alanyl-L-leucine, but not β-alanyl-glycine, induced hyperactivity behavior as observed with carnosine. Both carnosine and β-alanyl-L-leucine stimulated corticosterone release. Thus, dipeptides of β-alanyl-branched chain amino acids were compared in Experiment 2. The i.c.v. injection of β-alanyl-L-isoleucine caused a similar response as β-alanyl-L-leucine, but β-alanyl-L-valine was somewhat less effective than the other two dipeptides. β-Alanyl-L-leucine strongly stimulated, and the other two dipeptides tended to stimulate, corticosterone release.</p> <p>Conclusion</p> <p>These results suggest that central β-alanyl-branched chain amino acid stimulates activity in chicks through the hypothalamus-pituitary-adrenal axis. We named β-alanyl-L-leucine, β-alanyl-L-isoleucine and β-alanyl-L-valine as Excitin-1, Excitin-2 and Excitin-3, respectively.</p

    Central administration of L- and D-aspartate attenuates stress behaviors by social isolation and CRF in neonatal chicks

    Get PDF
    Intracerebroventricular (i.c.v.) administration of L-aspartate (L-Asp) attenuates stress responses in neonatal chicks, but the mechanism has not been clarified. In the present study, three behavioral experiments were carried out under socially isolated stressful conditions exacerbated by the use of corticotrophin-releasing factor (CRF). In Experiment 1, i.c.v. injection of L-Asp attenuated behavioral stress responses (distress vocalization and active wakefulness) in a dose-dependent manner. Furthermore, L-Asp increased time spent standing/sitting motionless with eyes open and sitting motionless with head dropped (sleeping posture) in comparison with the group receiving CRF alone. In Experiment 2, i.c.v. injection of D-Asp dosedependently decreased the number of distress vocalizations and the amount of time spent in active wakefulness. D-Asp increased the time spent standing/sitting motionless with eyes open compared with the group receiving CRF alone. In Experiment 3, we directly compared the effect of L-Asp with that of D-Asp. Both L- and D-Asp induced sedative effects under an acutely stressful condition. However, L-Asp, but not D-Asp, increased the time spent in a sleeping posture. These results indicate that both L- and D-Asp, when present in the brain, could induce a sedative effect, while the mechanism for hypnosis in neonatal chicks may be different for L-Asp in comparison with D-Asp

    Book Review

    No full text

    Introduction

    No full text

    Anatomy & Physiology of Domestic Animals

    No full text
    vii+612hlm.;28c
    corecore