1,759 research outputs found
Stretched Exponential Relaxation in the Biased Random Voter Model
We study the relaxation properties of the voter model with i.i.d. random
bias. We prove under mild condions that the disorder-averaged relaxation of
this biased random voter model is faster than a stretched exponential with
exponent , where depends on the transition rates
of the non-biased voter model. Under an additional assumption, we show that the
above upper bound is optimal. The main ingredient of our proof is a result of
Donsker and Varadhan (1979).Comment: 14 pages, AMS-LaTe
Phase transitions for the long-time behavior of interacting diffusions
Article / Letter to editorMathematisch Instituu
Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures
We consider Ising-spin systems starting from an initial Gibbs measure
and evolving under a spin-flip dynamics towards a reversible Gibbs measure
. Both and are assumed to have a finite-range
interaction. We study the Gibbsian character of the measure at time
and show the following: (1) For all and , is Gibbs
for small . (2) If both and have a high or infinite temperature,
then is Gibbs for all . (3) If has a low non-zero
temperature and a zero magnetic field and has a high or infinite
temperature, then is Gibbs for small and non-Gibbs for large
. (4) If has a low non-zero temperature and a non-zero magnetic field
and has a high or infinite temperature, then is Gibbs for
small , non-Gibbs for intermediate , and Gibbs for large . The regime
where has a low or zero temperature and is not small remains open.
This regime presumably allows for many different scenarios
The renormalization transformation for two-type branching models
This paper studies countable systems of linearly and hierarchically
interacting diffusions taking values in the positive quadrant. These systems
arise in population dynamics for two types of individuals migrating between and
interacting within colonies. Their large-scale space-time behavior can be
studied by means of a renormalization program. This program, which has been
carried out successfully in a number of other cases (mostly one-dimensional),
is based on the construction and the analysis of a nonlinear renormalization
transformation, acting on the diffusion function for the components of the
system and connecting the evolution of successive block averages on successive
time scales. We identify a general class of diffusion functions on the positive
quadrant for which this renormalization transformation is well-defined and,
subject to a conjecture on its boundary behavior, can be iterated. Within
certain subclasses, we identify the fixed points for the transformation and
investigate their domains of attraction. These domains of attraction constitute
the universality classes of the system under space-time scaling.Comment: 48 pages, revised version, to appear in Ann. Inst. H. Poincare (B)
Probab. Statis
Collision local time of transient random walks and intermediate phases in interacting stochastic systems
In a companion paper, a quenched large deviation principle (LDP) has been established for the empirical process of words obtained by cutting an i.i.d. sequence of letters into words according to a renewal process. We apply this LDP to prove that the radius of convergence of the moment generating function of the collision local time of two strongly transient random walks on Zd, d = 1, strictly increases when we condition on one of the random walks, both in discrete time and in continuous time. We conjecture that the same holds for two transient but not strongly transient random walks. The presence of these gaps implies the existence of an intermediate phase for the long-time behaviour of a class of coupled branching processes, interacting diffusions, respectively, directed polymers in random environments
Quenched LDP for words in a letter sequence
When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. We apply our LDP to prove that the radius of convergence of the moment generating function of the collision local time of two strongly transient random walks on Zd, d = 1, strictly increases when we condition on one of the random walks, both in discrete time and in continuous time. The presence of these gaps implies the existence of an intermediate phase for the long-time behaviour of a class of coupled branching processes, interacting diffusions, respectively, directed polymers in random environments
Kawasaki dynamics with two types of particles : critical droplets
This is the third in a series of three papers in which we study a two-dimensional lattice gas consisting of two types of particles subject to Kawasaki dynamics at low temperature in a large ¿nite box with an open boundary. Each pair of particles occupying neighboring sites has a negative binding energy provided their types are di¿erent, while each particle has a positive activation energy that depends on its type. There is no binding energy between particles of the same type. At the boundary of the box particles are created and annihilated in a way that represents the presence of an in¿nite gas reservoir. We start the dynamics from the empty box and are interested in the transition time to the full box. This transition is triggered by a critical droplet appearing somewhere in the box. In the ¿rst paper we identi¿ed the parameter range for which the system is metastable, showed that the ¿rst entrance distribution on the set of critical droplets is uniform, computed the expected transition time up to and including a multiplicative factor of order one, and proved that the nucleation time divided by its expectation is exponentially distributed, all in the limit of low temperature. These results were proved under three hypotheses, and involved three model-dependent quantities: the energy, the shape and the number of critical droplets. In the second paper we proved the ¿rst and the second hypothesis and identi¿ed the energy of critical droplets. In the third paper we prove the third hypothesis and identify the shape and the number of critical droplets, thereby completing our analysis. Both the second and the third paper deal with understanding the geometric properties of subcritical, critical and supercritical droplets, which are crucial in determining the metastable behavior of the system, as explained in the ¿rst paper. The geometry turns out to be considerably more complex than for Kawasaki dynamics with one type of particle, for which an extensive literature exists. The main motivation behind our work is to understand metastability of multi-type particle systems
- …