80 research outputs found

    Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups

    Get PDF
    Microarray analysis on pooled samples has previously identified ZDHHC9 (DHHC9) to be upregulated in colon adenocarcinoma compared to normal colon mucosa. Analyses of 168 samples from proximal and distal adenocarcinomas using U133plus2.0 microarrays validated these findings, showing a significant two-fold (log 2) upregulation of DHHC9 transcript (P<10(−6)). The upregulation was more striking in microsatellite stable (MSS), than in microsatellite instable (MSI), tumours. Genes known to interact with DHHC9 as H-Ras or N-Ras did not show expression differences between MSS and MSI. Immunohistochemical analysis was performed on 60 colon adenocarcinomas, previously analysed on microarrays, as well as on tissue microarrays with 40 stage I–IV tumours and 46 tumours from different organ sites. DHHC9 protein was strongly expressed in MSS compared to MSI tumours, readily detectable in premalignant lesions, compared to the rare expression seen in normal mucosa. DHHC9 was specific for tumours of the gastrointestinal tract and localised to the Golgi apparatus, in vitro and in vivo. Overexpression of DHHC9 decreased the proliferation of SW480 and CaCo2 MSS cell lines significantly. In conclusion, DHHC9 is a gastrointestinal-related protein highly expressed in MSS colon tumours. The palmitoyl transferase activity, modifying N-Ras and H-Ras, suggests DHHC9 as a target for anticancer drug design

    Tumour invasiveness, the local and systemic environment and the basis of staging systems in colorectal cancer

    Get PDF
    background: The present study aimed to examine the relationship between tumour invasiveness (T stage), the local and systemic environment and cancer-specific survival (CSS) of patients with primary operable colorectal cancer. methods: The tumour microenvironment was examined using measures of the inflammatory infiltrate (Klintrup-Makinen (KM) grade and Immunoscore), tumour stroma percentage (TSP) and tumour budding. The systemic inflammatory environment was examined using modified Glasgow Prognostic Score (mGPS) and neutrophil:lymphocyte ratio (NLR). A 5-year CSS was examined. results: A total of 331 patients were included. Increasing T stage was associated with colonic primary, N stage, poor differentiation, margin involvement and venous invasion (P&lt;0.05). T stage was significantly associated with KM grade (P=0.001), Immunoscore (P=0.016), TSP (P=0.006), tumour budding (P&lt;0.001), and elevated mGPS and NLR (both P&lt;0.05). In patients with T3 cancer, N stage stratified survival from 88 to 64%, whereas Immunoscore and budding stratified survival from 100 to 70% and from 91 to 56%, respectively. The Glasgow Microenvironment Score, a score based on KM grade and TSP, stratified survival from 93 to 58%. conclusions: Although associated with increasing T stage, local and systemic tumour environment characteristics, and in particular Immunoscore, budding, TSP and mGPS, are stage-independent determinants of survival and may be utilised in the staging of patients with primary operable colorectal cancer

    Increased expression of transcription factor TFAP2α correlates with chemosensitivity in advanced bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standard treatment for patients with advanced transitional cell carcinoma of the bladder is platin based chemotherapy. Only approximately 50% of the patients respond to chemotherapy. Therefore, molecular predictive markers for identification of chemotherapy sensitive subgroups of patients are highly needed. We selected the transcription factor <it>TFAP2α </it>from a previously identified gene expression signature for chemotherapy response.</p> <p>Methods</p> <p><it>TFAP2α </it>expression and localization was assessed by immunohistochemistry using a tissue microarray (TMA) containing 282 bladder cancer tumors from patients with locally advanced (pT2-T4<sub>b </sub>and N<sub>1-3</sub>) or metastatic (M<sub>1</sub>) disease. All patients had received cisplatin containing chemotherapy. Furthermore, QPCR analysis of three <it>TFAP2α </it>isoforms was performed on tumor specimens of advanced muscle invasive bladder cancers (T2-4). Using the bladder cell lines T24 and SW780 the relation of <it>TFAP2α </it>and cisplatin and gemcitabine sensitivity as well as cell proliferation was examined using siRNA directed <it>TFAP2α </it>knockdown.</p> <p>Results</p> <p>TFAP2α protein expression was analyzed on a TMA with cores from 282 advanced bladder cancer tumors from patients treated with cisplatin based combinational chemotherapy. <it>TFAP2α </it>was identified as a strong independent predictive marker for a good response and survival after cisplatin-containing chemotherapy in patients with advanced bladder cancer. Strong TFAP2α nuclear and cytoplasmic staining predicted good response to chemotherapy in patients with lymph node metastasis, whereas weak TFAP2α nuclear staining predicted good response in patients without lymph node metastasis. In vitro studies showed that siRNA mediated knockdown of TFAP2α increased the proliferation of SW780 cells and rendered the cells less sensitive to cisplatin and gemcitabine. In contrast to that T24 bladder cells with mutated p53 showed to be more drug sensitive upon TFAP2α depletion.</p> <p>Conclusions</p> <p>High levels of nuclear and cytoplasmic TFAP2α protein were a predictor of increased overall survival and progression free survival in patients with advanced bladder cancer treated with cisplatin based chemotherapy. TFAP2α knockdown increased the proliferation of the SW780 bladder cells and reduced cisplatin and gemcitabine induced cell death. The inverse effect was observed in the <it>TP53 </it>mutated T24 cell line where TFAP2α silencing augmented cisplatin and gemcitabine sensitivity and did not stimulate proliferation.</p

    Personalized medicine in psoriasis: developing a genomic classifier to predict histological response to Alefacept

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alefacept treatment is highly effective in a select group patients with moderate-to-severe psoriasis, and is an ideal candidate to develop systems to predict who will respond to therapy. A clinical trial of 22 patients with moderate to severe psoriasis treated with alefacept was conducted in 2002-2003, as a mechanism of action study. Patients were classified as responders or non-responders to alefacept based on histological criteria. Results of the original mechanism of action study have been published. Peripheral blood was collected at the start of this clinical trial, and a prior analysis demonstrated that gene expression in PBMCs differed between responders and non-responders, however, the analysis performed could not be used to predict response.</p> <p>Methods</p> <p>Microarray data from PBMCs of 16 of these patients was analyzed to generate a treatment response classifier. We used a discriminant analysis method that performs sample classification from gene expression data, via "nearest shrunken centroid method". Centroids are the average gene expression for each gene in each class divided by the within-class standard deviation for that gene.</p> <p>Results</p> <p>A disease response classifier using 23 genes was created to accurately predict response to alefacept (12.3% error rate). While the genes in this classifier should be considered as a group, some of the individual genes are of great interest, for example, cAMP response element modulator (CREM), v-MAF avian musculoaponeurotic fibrosarcoma oncogene family (MAFF), chloride intracellular channel protein 1 (CLIC1, also called NCC27), NLR family, pyrin domain-containing 1 (NLRP1), and CCL5 (chemokine, cc motif, ligand 5, also called regulated upon activation, normally T expressed, and presumably secreted/RANTES).</p> <p>Conclusions</p> <p>Although this study is small, and based on analysis of existing microarray data, we demonstrate that a treatment response classifier for alefacept can be created using gene expression of PBMCs in psoriasis. This preliminary study may provide a useful tool to predict response of psoriatic patients to alefacept.</p

    Gene expression signatures for colorectal cancer microsatellite status and HNPCC

    Get PDF
    The majority of microsatellite instable (MSI) colorectal cancers are sporadic, but a subset belongs to the syndrome hereditary nonpolyposis colorectal cancer (HNPCC). Microsatellite instability is caused by dysfunction of the mismatch repair (MMR) system that leads to a mutator phenotype, and MSI is correlated to prognosis and response to chemotherapy. Gene expression signatures as predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of interest both clinically and biologically. To address this issue, we profiled the gene expression of 101 stage II and III colorectal cancers (34 MSI, 67 microsatellite stable (MSS)) using high-density oligonucleotide microarrays. From these data, we constructed a nine-gene signature capable of separating the mismatch repair proficient and deficient tumours. Subsequently, we demonstrated the robustness of the signature by transferring it to a real-time RT-PCR platform. Using this platform, the signature was validated on an independent test set consisting of 47 tumours (10 MSI, 37 MSS), of which 45 were correctly classified. In a second step, we constructed a signature capable of separating MMR-deficient tumours into sporadic MSI and HNPCC cases, and validated this by a mathematical cross-validation approach. The demonstration that this two-step classification approach can identify MSI as well as HNPCC cases merits further gene expression studies to identify prognostic signatures

    Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer

    Get PDF
    The aim of this study was to identify deregulated transcription factors (TFs) in colorectal cancer (CRC) and to evaluate their relation with the recurrence of stage II CRC and overall survival. Microarray-based transcript profiles of 20 normal mucosas and 424 CRC samples were used to identify 51 TFs displaying differential transcript levels between normal mucosa and CRC. For a subset of these we provide in vitro evidence that deregulation of the Wnt signalling pathway can lead to the alterations observed in tissues. Furthermore, in two independent cohorts of microsatellite-stable stage II cancers we found that high SOX4 transcript levels correlated with recurrence (HR 2.7; 95% CI, 1.2–6.0; P=0.01). Analyses of ∼1000 stage I–III adenocarcinomas, by immunohistochemistry, revealed that patients with tumours displaying high levels of CBFB and SMARCC1 proteins had a significantly better overall survival rate (P=0.0001 and P=0.0275, respectively) than patients with low levels. Multivariate analyses revealed that a high CBFB protein level was an independent predictor of survival. In conclusion, several of the identified TFs seem to be involved in the progression of CRC

    Copy number alterations and allelic ratio in relation to recurrence of rectal cancer

    Get PDF
    BACKGROUND: In rectal cancer, total mesorectal excision surgery combined with preoperative (chemo)radiotherapy reduces local recurrence rates but does not improve overall patient survival, a result that may be due to the harmful side effects and/or co-morbidity of preoperative treatment. New biomarkers are needed to facilitate identification of rectal cancer patients at high risk for local recurrent disease. This would allow for preoperative (chemo)radiotherapy to be restricted to high-risk patients, thereby reducing overtreatment and allowing personalized treatment protocols. We analyzed genome-wide DNA copy number (CN) and allelic alterations in 112 tumors from preoperatively untreated rectal cancer patients. Sixty-six patients with local and/or distant recurrent disease were compared to matched controls without recurrence. Results were validated in a second cohort of tumors from 95 matched rectal cancer patients. Additionally, we performed a meta-analysis that included 42 studies reporting on CN alterations in colorectal cancer and compared results to our own data. RESULTS: The genomic profiles in our study were comparable to other rectal cancer studies. Results of the meta-analysis supported the hypothesis that colon cancer and rectal cancer may be distinct disease entities. In our discovery patient study cohort, allelic retention of chromosome 7 was significantly associated with local recurrent disease. Data from the validation cohort were supportive, albeit not statistically significant, of this finding. CONCLUSIONS: We showed that retention of heterozygosity on chromosome 7 may be associated with local recurrence in rectal cancer. Further research is warranted to elucidate the mechanisms and effect of retention of chromosome 7 on the development of local recurrent disease in rectal cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1550-0) contains supplementary material, which is available to authorized users
    corecore