2,813 research outputs found

    Sources, control, and effects of noise from aircraft propellers and rotors

    Get PDF
    Source noise predictions are compared with measurements for conventional low-speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are described, indicating that about 5-dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are described for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone, and the relative importance of the propeller tones is examined

    The Logistic Path from the International Space Station to the Moon and Beyond

    Get PDF
    The period from the loss of the Space Shuttle Columbia in February 2003 to resumption of Space Shuttle flights, planned for May 2005, has presented significant challenges to International Space Station (ISS) maintenance operations. Sharply curtailed upmass capability has forced NASA to revise its support strategy and to undertake maintenance activities that have significantly expanded the envelope of the ISS maintenance concept. This experience has enhanced confidence in the ability to continue to support ISS in the period following the permanent retirement of the Space Shuttle fleet in 2010. Even greater challenges face NASA with the implementation of the Vision for Space Exploration that will introduce extended missions to the Moon beginning in the period of 2015 - 2020 and ultimately see human missions to more distant destinations such as Mars. The experience and capabilities acquired through meeting the maintenance challenges of ISS will serve as the foundation for the maintenance strategy that will be employed in support of these future missions

    Microscopic description of the surface dipole plasmon in large Na_N clusters (950 < N < 12050)

    Full text link
    Fully microscopic RPA/LDA calculations of the dipole plasmon for very large neutral and charged sodium clusters, Na_N^Z+, in the size range 950 < N < 12050 are presented for the first time. 60 different sizes are considered altogether, which allows for an in-depth investigation of the asymptotic behavior of both the width and the position of the plasmon.Comment: Latex/Revtex, 4 pages with 4 Postscript figures, accepted for publication in Physical Review

    Anomalous tunneling conductances of a spin singlet \nu=2/3 edge states: Interplay of Zeeman splitting and Long Range Coulomb Interaction

    Full text link
    The point contact tunneling conductance between edges of the spin singlet ν=2/3,K^=(3/3/0)\nu=2/3,\hat{K}=(3/3/0) quantum Hall states is studied both in the quasiparticle tunneling picture and in the electron tunneling picture. Due to the interplay of Zeeman splitting and the long range Coulomb interaction between edges of opposite chirality novel spin excitations emerge, and their effect is characterized by anomalous exponents of the charge and spin tunneling conductances in various temperature ranges. Depending on the kinds of scatterings at the point contact and the tunneling mechanism the anomalous interaction in spin sector may enhance or suppress the tunneling conductances. The effects of novel spin excitation are also relevant to the recent NMR experiments on quantum Hall edges.Comment: Revtex File, 7 pages: To be published in Physical Reviews

    Entangled Electronic States in Multiple Quantum-Dot Systems

    Full text link
    We present an analytically solvable model of PP colinear, two-dimensional quantum dots, each containing two electrons. Inter-dot coupling via the electron-electron interaction gives rise to sets of entangled ground states. These ground states have crystal-like inter-plane correlations and arise discontinously with increasing magnetic field. Their ranges and stabilities are found to depend on dot size ratios, and to increase with PP.Comment: To appear in Physical Review B (in press). RevTeX file. Figures available from [email protected]

    Anomalous Exponent of the Spin Correlation Function of a Quantum Hall Edge

    Full text link
    The charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effective interaction for the spin degree of freedom in the long wavelength limit. The anomalous exponent may be determined by measuring nuclear spin relaxation rates in a narrow quantum Hall bar or in a quantum wire in strong magnetic fields.Comment: 4 pages, Revtex file, no figures. To appear in Physical Revews B, Rapid communication

    A WXW Motif Is Required for the Anticancer Activity of the TAT-RasGAP317-326 Peptide.

    Get PDF
    TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326

    Solution of the Schr\"odinger Equation for Quantum Dot Lattices with Coulomb Interaction between the Dots

    Full text link
    The Schr\"odinger equation for quantum dot lattices with non-cubic, non-Bravais lattices built up from elliptical dots is investigated. The Coulomb interaction between the dots is considered in dipole approximation. Then only the center of mass (c.m.) coordinates of different dots couple with each other. This c.m. subsystem can be solved exactly and provides magneto- phonon like collective excitations. The inter-dot interaction is involved only through a single interaction parameter. The relative coordinates of individual dots form decoupled subsystems giving rise to intra-dot excitations. As an example, the latter are calculated exactly for two-electron dots. Emphasis is layed on qualitative effects like: i) Influence of the magnetic field on the lattice instability due to inter-dot interaction, ii) Closing of the gap between the lower and the upper c.m. mode at B=0 for elliptical dots due to dot interaction, and iii) Kinks in the single dot excitation energies (versus magnetic field) due to change of ground state angular momentum. It is shown that for obtaining striking qualitative effects one should go beyond simple cubic lattices with spherical dots. We also prove a more general version of the Kohn Theorem for quantum dot lattices. It is shown that for observing effects of electron- electron interaction between the dots in FIR spectra (breaking Kohn's Theorem) one has to consider dot lattices with at least two dot species with different confinement tensors.Comment: 11 figures included as ps-file

    Effect of isospin dependent cross-section on fragment production in the collision of charge asymmetric nuclei

    Full text link
    To understand the role of isospin effects on fragmentation due to the collisions of charge asymmetric nuclei, we have performed a complete systematical study using isospin dependent quantum molecular dynamics model. Here simulations have been carried out for 124Xn+124Xn^{124}X_{n}+ ^{124}X_{n}, where n varies from 47 to 59 and for 40Ym+40Ym^{40}Y_{m}+ ^{40}Y_{m}, where m varies from 14 to 23. Our study shows that isospin dependent cross-section shows its influence on fragmentation in the collision of neutron rich nuclei

    Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking

    Get PDF
    AbstractThe antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (IKr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37°C of ionic current (IhERG) carried by wild-type (WT) or mutant hERG channels expressed in HEK293 cells. Alanine mutagenesis and ligand docking were used to investigate the roles of pore cavity amino-acid residues in amiodarone binding. Amiodarone inhibited WT outward IhERG tails with a half-maximal inhibitory concentration (IC50) of ∼45nM, whilst inward IhERG tails in a high K+ external solution ([K+]e) of 94mM were blocked with an IC50 of 117.8nM. Amiodarone’s inhibitory action was contingent upon channel gating. Alanine-mutagenesis identified multiple residues directly or indirectly involved in amiodarone binding. The IC50 for the S6 aromatic Y652A mutation was increased to ∼20-fold that of WT IhERG, similar to the pore helical mutant S624A (∼22-fold WT control). The IC50 for F656A mutant IhERG was ∼17-fold its corresponding WT control. Computational docking using a MthK-based hERG model differentiated residues likely to interact directly with drug and those whose Ala mutation may affect drug block allosterically. The requirements for amiodarone block of aromatic residues F656 and Y652 within the hERG pore cavity are smaller than for other high affinity IhERG inhibitors, with relative importance to amiodarone binding of the residues investigated being S624A∼Y652A>F656A>V659A>G648A>T623A
    corecore