69 research outputs found

    The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor

    Get PDF
    SoxR protein is a redox-responsive transcription factor that governs a regulon of oxidative stress and antibiotic resistance genes in Escherichia coli. Purified SoxR contains oxidized [2Fe-2S] clusters and stimulates in vitro transcription of its target gene soxS up to 100-fold. SoxR transcriptional activity, but not DNA binding, is completely dependent on the [2Fe-2S] clusters; apo-SoxR prepared in vitro binds the soxS promoter with unchanged affinity but does not have transcription activity. Thus, modulation of the SoxR [2Fe-2S] clusters was proposed to control the protein\u27s function in transcription. Here, we provide evidence that SoxR with reduced [2Fe-2S] clusters is inactive. Redox titration of purified SoxR revealed a midpoint potential of -285 ± 10 mV (pH 7.6). In vitro transcription assays showed that SoxR was inactivated when the [2Fe-2S] cluster was reduced (-380 mV), and full activity was restored upon reoxidation (+100 mV). The results suggest that one-electron oxidation and reduction of the [2Fe-2S] cluster regulate SoxR transcriptional activity

    Redox signal transduction: Mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form

    Get PDF
    SoxR is a [2Fe-2S] transcription factor triggered by oxidative stress and activated in vitro by one-electron oxidation or assembly of the iron- sulfur centers. To distinguish which mechanism operates in cells, we studied constitutively active SoxR (SoxR(c)) proteins. Three SoxR(c) proteins contained [2Fe-2S] centers required for in vitro transcription and, like wild-type SoxR, were inactivated by chemical reduction. However, in vivo spectroscopy showed that even without oxidative stress, the three SoxR(c) proteins failed to accumulate with reduced [2Fe-2S] (≤4% compared to ≤40% for wild type). One SoxR(c) protein had a redox potential 65 mV lower than wild type, consistent with its accumulation in the oxidized (activated) form in vivo. These results link in vitro and in vivo approaches showing novel redox regulation that couples an iron-sulfur oxidation state to promoter activation

    5,6-Saturated thymine lesions in DNA: production by ultraviolet light or hydrogen peroxide

    No full text

    How are base excision DNA repair pathways deployed in vivo? [version 1; referees: 4 approved]

    No full text
    Since the discovery of the base excision repair (BER) system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by in vitro studies. Largely for technical reasons, however, the confirmation of these subpathways in vivo has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them

    Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator

    Get PDF
    Nitric oxide (NO) has diverse roles in intercellular communication and (at higher levels) in immune-mediated cell killing. NO reacts with many cellular targets, with cell-killing effects correlated to inactivation of key enzymes through nitrosylation of their iron-sulfur centers. SoxR protein, a redox-sensitive transcription activator dependent on the oxidation state of its binuclear iron-sulfur ([2Fe-2S]) centers, is also activated in Escherichia coli on exposure to macrophage-generated NO. We show here that SoxR activation by NO occurs through direct modification of the [2Fe-2S] centers to form protein-bound dinitrosyl-iron-dithiol adducts, which we have observed both in intact bacterial cells and in purified SoxR after NO treatment. Functional activation through nitrosylation of iron-sulfur centers contrasts with the inactivation typically caused by this modification. Purified, nitrosylated SoxR has transcriptional activity similar to that of oxidized SoxR and is relatively stable. In contrast, nitrosylated SoxR is short-lived in intact cells, indicative of mechanisms that actively dispose of nitrosylated iron-sulfur centers

    Knockout and Inhibition of Ape1: Roles of Ape1 in Base Excision DNA Repair and Modulation of Gene Expression

    No full text
    Apurinic/apyrimidinic endonuclease 1/redox effector-1 (Ape1/Ref-1) is the major apurinic/apyrimidinic (AP) endonuclease in mammalian cells. It functions mainly in the base excision repair pathway to create a suitable substrate for DNA polymerases. Human Ape1 protein can activate some transcription factors to varying degrees, dependent on its N-terminal, unstructured domain, and some of the cysteines within it, apparently via a redox mechanism in some cases. Many cancer studies also suggest that Ape1 has potential for prognosis in terms of the protein level or intracellular localization. While homozygous disruption of the Ape1 structural gene APEX1 in mice causes embryonic lethality, and most studies in cell culture indicate that the expression of Ape1 is essential, some recent studies reported the isolation of viable APEX1 knockout cells with only mild phenotypes. It has not been established by what mechanism the Ape1-null cell lines cope with the endogenous DNA damage that the enzyme normally handles. We review the enzymatic and other activities of Ape1 and the recent studies of the properties of the APEX1 knockout lines. The APEX1 deletions in CH12F3 and HEK293 FT provide an opportunity to test for possible off-target effects of Ape1 inhibition. For this work, we tested the Ape1 endonuclease inhibitor Compound 3 and the redox inhibitor APX2009. Our results confirmed that both APEX1 knockout cell lines are modestly more sensitive to killing by an alkylating agent than their Ape1-proficient cells. Surprisingly, the knockout lines showed equal sensitivity to direct killing by either inhibitor, despite the lack of the target protein. Moreover, the CH12F3 APEX1 knockout was even more sensitive to Compound 3 than its APEX1+ counterpart. Thus, it appears that both Compound 3 and APX2009 have off-target effects. In cases where this issue may be important, it is advisable that more specific endpoints than cell survival be tested for establishing mechanism
    • …
    corecore