170 research outputs found

    The Albedos of Kepler's Close-in super-Earths

    Get PDF
    Exoplanet research focusing on the characterization of super-Earths is currently limited to those handful targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo lightcurve analyses for 97 Kepler close-in RP2.0RR_P \lesssim 2.0 R_{\oplus} super-Earth candidates with the aim to detect their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchical Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos AgA_g in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earths geometric albedos are statistically larger than for hot Jupiters, which have medians AgA_g ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (AgA_g\gtrsim0.4). I argue that a better understanding of the incidence of stellar irradiation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.Comment: ApJ Letters, in press. 6 pages, 3 figures and 1 tabl

    Understanding Trends Associated with Clouds in Irradiated Exoplanets

    Full text link
    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0 to Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed) and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux to be weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate if a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. (2013). Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates, despite the incident stellar flux being similar for both exoplanets.Comment: Accepted by ApJ (on 29th August 2013). 11 pages, 5 figures, 1 table. Minor typo in Figure 3c correcte

    Hot Jupiter secondary eclipses measured by Kepler

    Get PDF
    Hot-Jupiters are known to be dark in visible bandpasses, mainly because of the alkali metal absorption lines and TiO and VO molecular absorption bands. The outstanding quality of the Kepler mission photometry allows a detection (or non-detection upper limits on) giant planet secondary eclipses at visible wavelengths. We present such measurements on published planets from Kepler Q1 data. We then explore how to disentangle between the planetary thermal emission and the reflected light components that can both contribute to the detected signal in the Kepler bandpass. We finally mention how different physical processes can lead to a wide variety of hot-Jupiters albedos

    Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD189733b

    Full text link
    Mapping distant worlds is the next frontier for exoplanet infrared photometry studies. Ultimately, constraining spatial and temporal properties of an exoplanet atmosphere will provide further insight into its physics. For tidally-locked hot Jupiters that transit and are eclipsed by their host star, the first steps are now possible. Our aim is to constrain an exoplanet's shape, brightness distribution (BD) and system parameters from its light curve. Notably, we rely on the eclipse scanning. We use archived Spitzer 8-{\mu}m data of HD189733 (6 transits, 8 secondary eclipses, and a phase curve) in a global MCMC procedure for mitigating systematics. We also include HD189733's out-of-transit radial velocity measurements. We find a 6-{\sigma} deviation from the expected occultation of a uniformly-bright disk. This deviation emerges mainly from HD189733b's thermal pattern, not from its shape. We indicate that the correlation of the orbital eccentricity, e, and BD (uniform time offset) does also depend on the stellar density, \rho*, and the impact parameter, b (e-b-\rho*-BD correlation). For HD189733b, we find that relaxing the e-constraint and using more complex BDs lead to lower stellar/planetary densities and a more localized and latitudinally-shifted hot spot. We obtain an improved constraint on the upper limit of HD189733b's orbital eccentricity, e<0.011 (95%), when including the RV measurements. Our study provides new insights into the analysis of exoplanet light curves and a proper framework for future eclipse-scanning observations. Observations of the same exoplanet at different wavelengths will improve the constraints on its system parameters while ultimately yielding a large-scale time-dependent 3D map of its atmosphere. Finally, we discuss the perspective of extending our method to observations in the visible, in particular to better understand exoplanet albedos.Comment: Accepted for publication in A&A. Final version will be available soon at http://www.aanda.org by Free Open Acces

    The Eccentricity Distribution of Short-Period Planet Candidates Detected by Kepler in Occultation

    Get PDF
    We characterize the eccentricity distribution of a sample of ~50 short-period planet candidates using transit and occultation measurements from NASA's Kepler Mission. First, we evaluate the sensitivity of our hierarchical Bayesian modeling and test its robustness to model misspecification using simulated data. When analyzing actual data assuming a Rayleigh distribution for eccentricity, we find that the posterior mode for the dispersion parameter is σ=0.081±0.0030.014\sigma=0.081 \pm^{0.014}_{0.003}. We find that a two-component Gaussian mixture model for ecosωe \cos \omega and esinωe \sin \omega provides a better model than either a Rayleigh or Beta distribution. Based on our favored model, we find that 90%\sim90\% of planet candidates in our sample come from a population with an eccentricity distribution characterized by a small dispersion (0.01\sim0.01), and 10%\sim10\% come from a population with a larger dispersion (0.22\sim0.22). Finally, we investigate how the eccentricity distribution correlates with selected planet and host star parameters. We find evidence that suggests systems around higher metallicity stars and planet candidates with smaller radii come from a more complex eccentricity distribution.Comment: Accepted for publication in Ap

    A Semi-Analytical Model of Visible-Wavelength Phase Curves of Exoplanets and Applications to Kepler-7 b and Kepler-10 b

    Get PDF
    Kepler has detected numerous exoplanet transits by precise measurements of stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky and gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler-7 b and the rocky planet Kepler-10 b using the model. In general, we find that a hot exoplanet's visible-wavelength phase curve having a significant phase offset can usually be explained by two classes of solutions: one class requires a thermal hot spot shifted to one side of the substellar point, and the other class requires reflective clouds concentrated on the same side of the substellar point. The two solutions would require very different Bond albedos to fit the same phase curve; atmospheric circulation models or eclipse observations at longer wavelengths can effectively rule out one class of solutions, and thus pinpoint the albedo of the planet, allowing decomposition of the reflection and the thermal emission components in the phase curve. Particularly for Kepler-7 b, reflective clouds located on the west side of the substellar point can best explain its phase curve. We further derive that the reflectivity of the clear part of the atmosphere should be less than 7% and that of the cloudy part should be greater than 80% (abridged)Comment: 16 pages, 7 figures, accepted for publication in Ap

    Revisiting the Phase Curves of WASP-43b: Confronting Reanalyzed Spitzer Data with Cloudy Atmospheres

    Get PDF
    Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μ\mum Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloudfree and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloudfree atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μ\mum phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.Comment: Accepted for publication in Ap

    A new yield simulator for transiting planets and false positives: application to the Next Generation Transit Survey

    Get PDF
    We present a yield simulator to predict the number and characteristics of planets, false positives and false alarms in transit surveys. The simulator is based on a galactic model and the planet occurrence rates measured by the Kepler mission. It takes into account the observation window function and measured noise levels of the investigated survey. Additionally, it includes vetting criteria to identify false positives. We apply this simulator to the Next Generation Transit Survey (NGTS), a wide-field survey designed to detect transiting Neptune-sized exoplanets. We find that red noise is the main limitation of NGTS up to 14 mag, and that its obtained level determines the expected yield. Assuming a red noise level of 1 mmag, the simulation predicts the following for a 4-yr survey: 4 ± 3 Super-Earths, 19 ± 5 Small Neptunes, 16 ± 4 Large Neptunes, 55 ± 8 Saturn-sized planets and 150 ± 10 Jupiter-sized planets, along with 4688 ± 45 eclipsing binaries and 843 ± 75 background eclipsing binaries. We characterize the properties of these objects to enhance the early identification of false positives and discuss follow-up strategies for transiting candidates

    The Spitzer search for the transits of HARPS low-mass planets

    Get PDF
    Radial velocity, microlensing and transit surveys have revealed the existence of a large population of low-mass planets in our Galaxy, the so-called ‘Super-Earths' and ‘Neptunes'. The understanding of these objects would greatly benefit from the detection of a few of them transiting bright nearby stars, making possible their thorough characterization with high signal-to-noise follow-up measurements. Our HARPS Doppler survey has now detected dozens of low-mass planets in close orbit around bright nearby stars, and it is highly probable that a few of them do transit their host star. In this context, we have set up an ambitious Spitzer program devoted to the search for the transits of the short period low-mass planets detected by HARPS. We present here this program and some of its first result

    Hunt for Starspots in HARPS Spectra of G and K Stars

    Get PDF
    We present a method for detecting starspots on cool stars using the cross-correlation function (CCF) of high resolution molecular spectral templates applied to archival high-resolution spectra of G and K stars observed with HARPS/HARPS-N. We report non-detections of starspots on the Sun even when the Sun was spotted, the solar twin 18 Scorpii, and the very spotted Sun-like star HAT-P-11, suggesting that Sun-like starspot distributions will be invisible to the CCF technique, and should not produce molecular absorption signals which might be confused for signatures of exoplanet atmospheres. We detect strong TiO absorption in the T Tauri K-dwarfs LkCa 4 and AA Tau, consistent with significant coverage by cool regions. We show that despite the non-detections, the technique is sensitive to relatively small spot coverages on M dwarfs and large starspot areas on Sun-like stars.Comment: 12 pages, 8 figures, accepted to A
    corecore