137 research outputs found

    Cyclic Spectral Analysis of Radio Pulsars

    Full text link
    Cyclic spectral analysis is a signal processing technique designed to deal with stochastic signals whose statistics vary periodically with time. Pulsar radio emission is a textbook example of this signal class, known as cyclostationary signals. In this paper, we discuss the application of cyclic spectral analysis methods to pulsar data, and compare the results with the traditional filterbank approaches used for almost all pulsar observations to date. In contrast to standard methods, the cyclic spectrum preserves phase information of the radio signal. This feature allows us to determine the impulse response of the interstellar medium and the intrinsic, unscattered pulse profile directly from a single observation. We illustrate these new analysis techniques using real data from an observation of the millisecond pulsar B1937+21.Comment: Accepted for publication in MNRA

    Pulsar data analysis with PSRCHIVE

    Full text link
    PSRCHIVE is an open-source, object-oriented, scientific data analysis software library and application suite for pulsar astronomy. It implements an extensive range of general-purpose algorithms for use in data calibration and integration, statistical analysis and modeling, and visualisation. These are utilised by a variety of applications specialised for tasks such as pulsar timing, polarimetry, radio frequency interference mitigation, and pulse variability studies. This paper presents a general overview of PSRCHIVE functionality with some focus on the integrated interfaces developed for the core applications.Comment: 21 pages, 5 figures; tutorial presented at IPTA 2010 meeting in Leiden merged with talk presented at 2011 pulsar conference in Beijing; includes further research and development on algorithms for RFI mitigation and TOA bias correctio

    The Massive Pulsar PSR J1614-2230: Linking Quantum Chromodynamics, Gamma-ray Bursts, and Gravitational Wave Astronomy

    Full text link
    The recent measurement of the Shapiro delay in the radio pulsar PSR J1614-2230 yielded a mass of 1.97 +/- 0.04 M_sun, making it the most massive pulsar known to date. Its mass is high enough that, even without an accompanying measurement of the stellar radius, it has a strong impact on our understanding of nuclear matter, gamma-ray bursts, and the generation of gravitational waves from coalescing neutron stars. This single high mass value indicates that a transition to quark matter in neutron-star cores can occur at densities comparable to the nuclear saturation density only if the quarks are strongly interacting and are color superconducting. We further show that a high maximum neutron-star mass is required if short duration gamma-ray bursts are powered by coalescing neutron stars and, therefore, this mechanism becomes viable in the light of the recent measurement. Finally, we argue that the low-frequency (<= 500 Hz) gravitational waves emitted during the final stages of neutron-star coalescence encode the properties of the equation of state because neutron stars consistent with this measurement cannot be centrally condensed. This will facilitate the measurement of the neutron star equation of state with Advanced LIGO/Virgo.Comment: Accepted for publication in ApJ

    Multimessenger Approaches to Supermassive Black Hole Binary Detection and Parameter Estimation II: Optimal Strategies for a Pulsar Timing Array

    Full text link
    Pulsar timing arrays (PTAs) are Galactic-scale gravitational wave (GW) detectors consisting of precisely-timed pulsars distributed across the sky. Within the decade, PTAs are expected to detect the nanohertz GWs emitted by close-separation supermassive black hole binaries (SMBHBs), thereby opening up the low frequency end of the GW spectrum for science. Individual SMBHBs which power active galactic nuclei are also promising multi-messenger sources; they may be identified via theoretically predicted electromagnetic (EM) signatures and be followed up by PTAs for GW observations. In this work, we study the detection and parameter estimation prospects of a PTA which targets EM-selected SMBHBs. Adopting a simulated Galactic millisecond pulsar population, we envisage three different pulsar timing campaigns which observe three mock sources at different sky locations. We find that an all-sky PTA which times the best pulsars is an optimal and feasible approach to observe EM-selected SMBHBs and measure their source parameters to high precision (i.e., comparable to or better than conventional EM measurements). We discuss the implications of our findings in the context of the future PTA experiment with the planned Deep Synoptic Array-2000 and the multi-messenger studies of SMBHBs such as the well-known binary candidate OJ 287.Comment: 14 pages, 6 figures, 3 tables; ApJ accepted; data will be available with the ApJ publicatio

    Correcting For Interstellar Scattering Delay In High-Precision Pulsar Timing: Simulation Results

    Get PDF
    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any method to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse jitter is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars
    • …
    corecore